ecole de musique piano
     
menu
 
 
 
 
 
 

Mutations et réparation de l'ADN

 

 

 

 

 

 

 

Mutations et réparation de l'ADN


La molécule d'ADN subit en permanence des attaques physiques, chimiques ou biologiques. Plusieurs systèmes de réparation veillent sur l'intégrité du patrimoine génétique.

Publié le 25 janvier 2018


LES DIFFÉRENTS TYPES DE MUTATIONS,
LES AGENTS MUTAGÈNES
Les mutations génétiques


Au moment de la division, la cellule déclenche le processus de réplication de l’ADN pour en obtenir une copie. De temps en temps, le système produit quelques erreurs : ce sont les mutations. Le plus souvent, elles sont sans conséquence, puisqu’il y a 98 % de chances qu’elles tombent dans une partie du génome qui ne code pas pour la synthèse d’une protéine (ADN non-codant).
D’autres mutations, en revanche, peuvent modifier la composition ou la quantité d’une protéine et être à l’origine d’une maladie génétique. Parmi les différents types de mutations, certaines sont ponctuelles avec perte, addition, ou substitution d’une seule base. Mais elles peuvent aussi concerner des zones plus larges et occasionner de plus grandes perturbations.

Les agents mutagènes

D’autres sources, environnementales ou liées aux activités de l’Homme, peuvent également modifier l’ADN. Les facteurs mutagènes sont biologiques, physiques ou chimiques. La Nature s’est dotée d’agents particulièrement efficaces, les virus, dont certains peuvent tuer. Les rayons UV, X et la radioactivité sont des agents physiques à la méthode radicale : ils cassent la molécule d’ADN. Quant aux agents mutagènes chimiques, ils sont légions ; par exemple : le benzopyrène, présent dans la fumée de cigarette, le trichloréthylène, utilisé comme solvant dans les pressings...

Stress cellulaire et réponse aux agressions
Autonome, la cellule n'en dépend pas moins de son environnement, des cellules qui l'entourent et du milieu dans lequel elle vit. À chaque minute, elle défend son équilibre et son intégrité. Elle fait face aux situations de stress grâce à des voies de signalisation qui lui permettent d'identifier son agresseur et de vérifier l'intégrité de son système. Selon l'importance des dommages, elle décide alors de se réparer ou de se donner la mort.

Les signaux d'alerte
Par quoi une cellule peut-elle être stressée ? Une infection virale ou bactérienne, des produits toxiques, des rayonnements (UV, ionisants, rayons X…), des mutations génétiques, le manque d'eau ou de nutriments… La cellule contrôle un très grand nombre d'informations qu'elle reçoit de son environnement et de son propre système. Sa survie dépend de sa capacité à s'informer de façon continue. Quand les signaux témoignent d'un problème, par exemple des cassures double-brin dues à des rayonnements ionisants, un système d'alerte se déclenche. Les voies de signalisation sont nombreuses, complexes et encore peu connues.

La réparation de l'ADN


Lorsque la cellule a évalué les dégâts comme modérés, une voie de réparation, spécifique pour chaque type de dommage, est activée. Dans le cas de cassures double-brin par exemple, des protéines se chargent de la réparation. Mais cela peut parfois générer des mutations et mener jusqu'à une instabilité génétique et au développement d'un cancer. Pour étudier ces mécanismes de réparation, il existe un modèle tout à fait intéressant : la bactérie Deinococcus deserti.
Elle tolère des doses très élevées de radiations gamma et UV et de longues périodes de déshydratation extrême. Cette extrême tolérance est liée à la réparation très efficace de dommages massifs de l'ADN, notamment des cassures double-brin qui sont létales chez la plupart des organismes. Un ensemble de processus, à la fois actifs (réparation efficace de l'ADN) et passifs (super-compaction de l'ADN, protection des protéines contre l'oxydation) contribuent à sa radio-tolérance.

La mort programmée
Une cellule se sacrifie pour l'organe et l'organisme. En cas de réparation difficile ou impossible, elle déclenche son apoptose. Cette mort cellulaire, contrairement à la nécrose, est programmée. Elle se déroule suivant un enchaînement de phénomènes complexes : la chromatine se condense et la cellule se fragmente en corps dits apoptotiques qui sont ensuite détruits. Les étapes de déclenchement sont contrôlées par 3 gènes et les différentes phases de la destruction cellulaire seraient contrôlées par une dizaine d'autres. Que se passe-t-il en cas de dysfonctionnement de ce processus ? L'équilibre entre croissance et mort cellulaire est rompu, l'intégrité de l'organisme n'est plus assurée. Dans le cas d'une prolifération des cellules néfastes, l'organisme peut développer un cancer. La stimulation de l'apoptose, quant à elle, peut conduire l'organisme à se retourner contre lui-même. C'est le cas pour le Sida qui affaiblit par pyroptose accrue des lymphocytes TCD4, diminue les défenses immunitaires de l'organisme et prépare un terrain favorable à des maladies opportunistes.

 

  DOCUMENT     cea         LIEN

 
 
 
 

photosynthèse

 

 

 

 

 

 

 

photosynthèse

Consulter aussi dans le dictionnaire : photosynthèse
Cet article fait partie du dossier consacré à la
nutrition


Chez les végétaux et certaines bactéries, processus de fabrication de matière organique à partir du gaz carbonique de l’atmosphère et (cas principal) d’eau, utilisant la lumière solaire comme source d’énergie et produisant un dégagement d’oxygène. [Synonyme vieilli : assimilation chlorophyllienne.]

1. Principe
La photosynthèse, qui signifie littéralement « synthèse [de matière organique] par la lumière », correspond au piégeage de l’énergie lumineuse provenant du Soleil, et de son stockage sous la forme de matière organique (des glucides notamment). Ce faisant, les végétaux et les bactéries photosynthétiques produisent leurs propres composants à partir de l’énergie solaire (on dits qu’ils sont autotrophes).
La photosynthèse des végétaux et des cyanobactéries consomme de l’eau (H2O), du dioxyde de carbone (CO2) et produit de l’oxygène (O2) – des expériences de marquage radioactif ont montré que cet oxygène provient de l’eau, et non du CO2 absorbé. Ce faisant, elle enrichit l'atmosphère en oxygène. Consommé par les êtres vivants (respiration), cet oxygène atmosphérique est renouvelé en permanence par l’activité de l’ensemble des organismes photosynthétiques – s’il n’y avait plus de photosynthèse sur Terre, son stock finirait par s’épuiser. Cas particulier, la photosynthèse des bactéries pourpres et des bactéries vertes ne rejette pas d’oxygène, mais d’autres sous-produits (essentiellement du soufre [S]).

L’énergie nécessaire à la photosynthèse est fournie par le rayonnement du Soleil. La lumière est donc un facteur décisif dans le processus (c’est pourquoi, par exemple, une plante d’appartement placée dans une pièce sombre dépérit rapidement). L'intensité lumineuse optimale est différente d'une espèce végétale ou bactérienne à une autre. Les diverses radiations qui composent la lumière blanche ont une action spécifique : les radiations rouges (600 nm) et indigo (400-450 nm), absorbées par la chlorophylle, sont les plus efficaces ; les vertes ne sont d'aucun effet.
2. Localisation

Chez les plantes et les algues, la photosynthèse s'effectue au niveau des parties vertes, et tout particulièrement des feuilles : leurs cellules renferment en effet de petites usines à photosynthèse, les chloroplastes, contenant eux-mêmes de la chlorophylle, un pigment de couleur verte qui permet la captation de l’énergie lumineuse. Chez les végétaux qui ne sont pas de couleur verte – par exemple les plantes à feuilles pourpres –, le processus et la localisation sont les mêmes : simplement, la chlorophylle est masquée par des pigments d’autres couleurs.

Chez les bactéries (notamment les abondantes cyanobactéries, mais aussi les bactéries vertes et les bactéries pourpres), qui sont dépourvues d’organites, la photosynthèse se fait dans le cytoplasme, sur des invaginations de la membrane cellulaire ou des corpuscules (appelés chlorosomes), qui renferment des bactériochlorophylles.
Chez les végétaux et les cyanobactéries, les pigments photosynthétiques sont groupés en photosystèmes : ceux-ci sont composés d’une antenne collectrice des photons (composée de chlorophylle b, de caroténoïdes et de protéines), et d’un centre réactionnel (composé de deux molécules de chlorophylle a), qui a pour fonction de transférer des électrons à une chaîne d’accepteurs d’électrons. Deux photosystèmes distincts ont été identifiés : le photosystème I et le photosystème II (numérotés dans l’ordre de leur découverte).

3. Les phases de la photosynthèse
La photosynthèse se déroule en deux phases distinctes : une phase dépendante de la lumière (phase photochimique ou phase claire), au cours de laquelle l'énergie solaire est captée par la chlorophylle, suivie d'une phase indépendante de la lumière (phase non photochimique ou phase sombre, beaucoup plus longue, où cette énergie est utilisée pour réaliser les synthèses chimiques.

3.1. La phase photochimique

Chloroplaste
Chez les végétaux, la phase photochimique, connue aussi sous les noms de phase claire ou phase lumineuse (bien que ces expressions soient aujourd’hui abandonnées par les scientifiques) se produit dans des replis de la membrane du chloroplaste, appelés thylakoïdes.
Au cours de cette phase, le photosystème I (PS I), frappé par les photons de la lumière solaire, éjecte des électrons. Ceux-ci sont transférés à une chaîne de transporteurs d’électrons, à l’issue de laquelle ils servent à réduire le NADP+ en NADPH + H+ (→ nicotinamide).

Des photons frappent aussi le photosystème II (PS II), qui libère également des électrons. Ceux-ci sont transférés à une chaîne de transfert d’électrons, puis à un complexe appelé cytochrome. Ce dernier transfert déclenche le passage d’ions H+ dans le stroma du chloroplaste (le milieu aqueux à l’intérieur du chloroplaste) ; ce passage permet à une enzyme, l’ATP-synthétase, de produire des molécules d’ATP (adénosine triphosphate) – l’ATP est la molécule universelle de stockage de l’énergie chez les êtres vivants. Du cytochrome, les électrons passent sur le PS I, pour compenser la perte d’électrons subie à la suite de l’action des photons. Les photons provoquent également la destruction des molécules d’eau (c’est la photolyse de l’eau). Cette réaction (H2O →2H+ + ½ O2 + 2e-) produit des protons qui vont rejoindre le stroma du chloroplaste et des électrons qui vont combler le trou électronique du PS II ; c’est aussi cette réaction qui dégage de l’oxygène (on voit ainsi que l’oxygène est un sous-produit, un déchet du mécanisme de la photosynthèse).
3.2. La phase non photochimique

La phase non photochimique, autrefois appelée phase sombre ou phase obscure, se déroule dans le stroma du chloroplaste et ne nécessite pas de lumière. Elle correspond à la synthèse de la matière organique ; elle consomme du CO2 et libère de l'eau. L’ATP et le NADPH + H+ produits par la phase photochimique servent à transformer le CO2 en glucides, au cours d’une série de réactions biochimiques appelées cycle de Calvin. Celui-ci débute par la fixation du dioxyde de carbone sur un composé appelé RuDP (ribulose-1,5-diphosphate), grâce à une enzyme, la Rubisco (ribulose-1,5 bisphosphate carboxylase/oxygénase) – acteur majeur de la transformation du CO2 en composés organiques, la Rubisco est la protéine la plus abondante sur Terre.

Cycle de Calvin
Le cycle de Calvin produit un triose (un sucre en C3), le glycéraldéhyde-3-phosphate (pour une consommation de 3 CO2, 9 ATP et 6 NAPH + H+). Les trioses se combinent ensuite pour former d’autres sucres, comme le glucose (sucre en C6 ou hexose).
Une quinzaine de secondes après l'absorption du CO2 apparaissent les premiers sucres. À partir de certains hexoses se constituent le saccharose et l'amidon. Outre des glucides, la photosynthèse peut également élaborer des lipides et des protéines par liaison avec une molécule azotée.
Ce cycle existe chez les algues, les plantes des régions tempérées et tous les arbres ; ces végétaux sont dits « plantes en C3 », car le cycle produit un triose.

4. Adaptations particulières
4.1. Plantes en C4

Chez les graminées tropicales (maïs, mil, sorgho, canne à sucre, plusieurs plantes de la famille des amarantacées), on a découvert en 1966 un autre mécanisme, dit « photosynthèse en C4 ». Il s’agit d’une photosynthèse en deux temps qui se réalise dans deux endroits distincts des feuilles : le premier temps dans les chloroplastes des cellules du mésophylle (la « couche centrale » de la feuille), le second dans ceux de la gaine de cellules qui entoure les vaisseaux conducteurs de sève (gaine périvasculaire). Dans le mésophylle, la fixation du carbone conduit à un composé en C4 (malate ou aspartate). Celui-ci est ensuite transporté jusqu’à la gaine périvasculaire où il est à nouveau décomposé en CO2. Ce CO2 est alors incorporé dans le cycle classique de Calvin, qui aboutit à la production de glucose et d’amidon. Ce mécanisme fonctionne d'autant mieux que la lumière est plus vive et la température voisine de 40-50 °C.
Les plantes en C4 ont un rendement photosynthétique très supérieur à celui des plantes en C3.

La synthèse des glucides se faisant autour des vaisseaux conducteurs, la migration des produits synthétisés est également plus rapide. La photorespiration (fixation d’O2 au lieu de CO2 sur la Rubisco du cycle de Calvin, mécanisme qui diminue le rendement de la photosynthèse) y est très faible. Alors que les végétaux en C3 ont besoin de 150 à 250 g d'eau pour assimiler 1 g de carbone, les végétaux en C4 peuvent se contenter de 50 à 100 g.

4.2. CAM (Crassulacean Acid Metabolism)
Certaines plantes, généralement des plantes grasses et quelques fougères, fixent le CO2 pendant la nuit pour former de l'acide malique. Cet acide est décomposé pendant le jour et libère du CO2 qui, comme précédemment, est introduit dans le cycle des synthèses (cycle de Calvin) en utilisant l'énergie captée par les chloroplastes à la lumière. Les plantes CAM peuvent ainsi supporter la vie dans les milieux arides-chauds : leurs stomates se ferment le jour pour limiter la transpiration et s'ouvrent la nuit pour laisser pénétrer le CO2, les synthèses se faisant le jour suivant.

5. Bilan de la photosynthèse
L'équation bilan de la photosynthèse des végétaux et des cyanobactéries (dans laquelle l'eau est le donneur d'électrons), est la suivante :
6 CO2 + 12 H2O + lumière → C6H12O6 + 6 O2 + 6 H2O

6. Importance de la photosynthèse
De la lumière reçue par une feuille, 20 % sont réfléchis, 10 % transmis et 70 % effectivement absorbés, sur lesquels 20 % sont dissipés en chaleur, 48 % perdus en fluorescence. Il reste environ 2 % servant à la photosynthèse.

Grâce à la photosynthèse, les végétaux jouent un rôle irremplaçable à la surface de la Terre ; en effet, les plantes vertes sont, avec quelques groupes de bactéries, les seuls êtres vivants capables d'élaborer des substances organiques à partir d'éléments minéraux. On estime que chaque année 20 milliards de tonnes de carbone sont fixés par les végétaux terrestres à partir du gaz carbonique de l'atmosphère et 15 milliards par les algues.
Les végétaux verts sont les producteurs primaires indispensables, premier maillon de la chaîne trophique (→ chaîne alimentaire) ; les végétaux non chlorophylliens et les animaux herbivores et carnivores (y compris l'homme) sont entièrement dépendants de la photosynthèse.
Pour en savoir plus, voir les articles métabolisme, écologie.

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

Le cervelet, une région du cerveau clé pour la socialisation

 

 

 

 

 

 

 

Le cervelet, une région du cerveau clé pour la socialisation

16 JUIN 2022 | PAR INSERM (SALLE DE PRESSE) | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Cette image du cervelet d’une souris exprimant une protéine fluorescente dans les cellules de Purkinje exprimant les récepteurs à la dopamine D2. © Emmanuel Valjent, Institut de Génomique Fonctionnelle (Montpellier).


Situé à l’arrière du crâne, le cervelet est une région du cerveau essentielle au contrôle de la fonction motrice, mais il contribue également aux fonctions cognitives supérieures, notamment aux comportements sociaux. Dans une étude récente, un consortium de recherche international comprenant des scientifiques de l’Inserm, de l’Université de Montpellier, du CNRS, de l’Institut de Neurociències Universitat Autònoma de Barcelone (INc-UAB) (Espagne) et de l’Université de Lausanne (Suisse) a découvert comment l’action d’un neurotransmetteur dans le cervelet, la dopamine, module les comportements sociaux via une action sur des récepteurs à dopamine spécifiques appelés D2R. En utilisant différents modèles de souris et des outils génétiques, les chercheurs et chercheuses montrent que des changements dans les niveaux de D2R, dans un type spécifique de cellules du cervelet, modifient la sociabilité et la préférence pour la nouveauté sociale, sans pour autant affecter les fonctions motrices. Ces résultats, publiés dans le journal Nature Neurosciences, ouvrent la voie à une meilleure compréhension de certains troubles psychiatriques liés à la sociabilité, comme les troubles du spectre autistique (TSA), les troubles bipolaires ou la schizophrénie.

La dopamine (DA) est le neurotransmetteur clef dans le système de récompense du cerveau, impliquée dans le contrôle de la motivation, des états émotionnels et des interactions sociales. La régulation de ces processus repose en grande partie sur l’activation de circuits neuronaux intégrés dans les régions limbiques. Cependant, des preuves récentes indiquent que le cervelet, une région classiquement associée au contrôle moteur, peut également contribuer aux fonctions cognitives supérieures, y compris les comportements sociaux.

Pour aller plus loin et mieux comprendre le rôle du cervelet, des chercheurs et chercheuses de l’Inserm, de l’Université de Montpellier, du CNRS, de l’Institut de Neurociències UAB (Espagne) et de l’Université de Lausanne (Suisse) ont mis en évidence un nouveau rôle de la dopamine au niveau du cervelet, montrant qu’elle module les comportements sociaux chez la souris.

En combinant une analyse transcriptomique[1] spécifique au type de cellule, des analyses par immunofluorescence et de l’imagerie 3D, les chercheurs ont d’abord démontré la présence d’un type particulier de récepteurs de la dopamine (nommé D2R) dans les principaux neurones de sortie du cervelet, les cellules de Purkinje. Grâce à des enregistrements de l’activité neuronale, ils ont pu montrer que les D2R modulaient l’excitation des cellules de Purkinje.

« Cette première série de résultats était déjà déterminante pour nous, car elle dévoilait que les D2R étaient bien présents dans le cervelet, ce qui n’était pas clair jusqu’à ce jour, et que, malgré leur faible niveau d’expression, ils étaient fonctionnels », souligne Emmanuel Valjent, directeur de recherche à l’Inserm et coordinateur de l’étude.

Comprendre le rôle de la dopamine dans le cervelet

Les chercheurs se sont ensuite intéressés à la fonction de ces récepteurs D2R au sein de ces neurones du le cervelet. En utilisant des approches génétiques permettant de réduire ou d’augmenter la quantité des récepteurs D2R sélectivement dans les cellules de Purkinje, ils ont analysé l’impact de ces altérations sur les fonctions motrices et non motrices du cervelet.

Les scientifiques ont ainsi montré qu’il existe une association entre la quantité de D2R qui sont exprimés dans les cellules de Purkinje et la modulation des comportements sociaux.

« Réduire l’expression de ce récepteur spécifique de la dopamine a altéré la sociabilité des souris ainsi que leur préférence pour la nouveauté sociale, alors que leur coordination et leurs fonctions motrices n’ont pas été affectées » explique le Dr Laura Cutando, post doctorante à l’Inserm, aujourd’hui chercheuse à l’UAB, et première auteure de l’article.

Cette étude constitue un premier pas vers une meilleure compréhension du rôle de la dopamine dans le cervelet et des mécanismes sous-jacents aux troubles psychiatriques tels que la schizophrénie, le TDAH et les troubles anxieux, qui ont tous en commun une altération des niveaux de dopamine et des comportements sociaux altérés.

 

[1] La transcriptomique est l’analyse des ARN messagers transcrits dans une cellule, tissu ou organisme, permettant de quantifier l’expression des gènes.

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Un « nano-robot » entièrement construit à base d’ADN pour explorer les processus cellulaires

 

 

 

 

 

 

 

Un « nano-robot » entièrement construit à base d’ADN pour explorer les processus cellulaires

28 JUIL 2022 | PAR INSERM (SALLE DE PRESSE) | BASES MOLÉCULAIRES ET STRUCTURALES DU VIVANT | TECHNOLOGIE POUR LA SANTE

Les scientifiques sont parvenus à concevoir un « nano-robot » composé de trois origamis d’ADN. Crédits : Gaëtan Bellot/Inserm

Mieux comprendre divers processus invisibles à l’œil nu, qui ont lieu à l’échelle de nos cellules, grâce à un minuscule robot construit à base d’ADN… Si cela s’apparenterait presque à un projet de science-fiction, il s’agit en fait de travaux très sérieux menés par des chercheurs et chercheuses de l’Inserm, du CNRS et de l’Université de Montpellier au Centre de biologie structurale de Montpellier[1]. Ce « nano-robot », très innovant, devrait permettre d’étudier de plus près des forces mécaniques qui s’appliquent à des niveaux microscopiques et qui sont cruciales pour de nombreux processus biologiques et pathologiques. Le dispositif est décrit dans une nouvelle étude, publiée dans la revue Nature Communications.

Des forces mécaniques s’exercent à l’échelle microscopique sur nos cellules, déclenchant des signaux biologiques qui sont essentiels à de nombreux processus cellulaires impliqués dans le fonctionnement normal de notre organisme ou dans le développement de pathologies.

Par exemple, la sensation de toucher est en partie conditionnée à l’application de forces mécaniques sur des récepteurs cellulaires spécifiques (dont la découverte a été récompensée cette année par le prix Nobel de médecine).

Outre le toucher, ces récepteurs sensibles aux forces mécaniques (on parle de mécano-récepteurs) permettent la régulation d’autres processus biologiques clés comme la constriction des vaisseaux sanguins, la perception de la douleur, la respiration ou encore la détection des ondes sonores dans l’oreille, etc.

Un dysfonctionnement de cette mécano-sensibilité cellulaire est notamment impliqué dans de nombreuses pathologies comme le cancer : les cellules cancéreuses migrent dans le corps en sondant et en s’adaptant constamment aux propriétés mécaniques de leur microenvironnement. Cette adaptation peut se faire seulement parce que des forces spécifiques sont détectées par des mécano-récepteurs qui transmettent l’information vers le cytosquelette des cellules.

A l’heure actuelle, nos connaissances sur ces mécanismes moléculaires impliqués dans la mécano-sensibilité cellulaire sont encore très limitées. Plusieurs technologies sont déjà disponibles pour appliquer des forces contrôlées et étudier ces mécanismes, mais elles comportent un certain nombre de limites. Elles sont notamment très coûteuses et ne permettent pas d’étudier plusieurs récepteurs cellulaires à la fois, ce qui signifie qu’elles sont très chronophages à utiliser si l’on souhaite collecter de nombreuses données.

Origamis d’ADN

Pour proposer une alternative, l’équipe de recherche menée par le chercheur Inserm Gaëtan Bellot au Centre de biologie structurale (Inserm/CNRS/Université de Montpellier) a décidé de s’appuyer sur la méthode des origamis d’ADN. Celle-ci permet l’auto-assemblage de nanostructures 3D dans une forme prédéfinie en utilisant la molécule d’ADN comme matériel de construction. Au cours des dix dernières années, la technique a permis des avancées majeures dans le domaine des nanotechnologies.

Les chercheurs et chercheuses sont ainsi parvenus à concevoir un « nano-robot » composé de trois origamis d’ADN. De taille nanométrique, il est donc compatible avec la taille d’une cellule humaine. Il permet pour la première fois d’appliquer et de contrôler une force avec une résolution de 1 piconewton, soit un mille-milliardième de Newton, un Newton correspondant à la force d’un doigt sur le poussoir du stylo. C’est la première fois qu’un objet auto-assemblé à base d’ADN créé par l’humain peut appliquer une force avec cette précision.

Dans un premier temps, le robot est couplé avec une molécule qui reconnaît un mécano-récepteur. Ce couplage permet ensuite de diriger le robot sur certaines de nos cellules et appliquer spécifiquement des forces sur les mécano-récepteurs cellulaires ciblés et localisés à la surface des cellules afin de les activer.

Un tel outil est très précieux pour la recherche fondamentale, car il pourrait être utilisé pour mieux comprendre les mécanismes moléculaires impliqués dans la mécano-sensibilité cellulaire et découvrir de nouveaux récepteurs cellulaires sensibles aux forces mécaniques. Grâce au robot, les scientifiques pourront également étudier plus précisément à quel moment, lors de l’application d’une force, des voies de signalisation clés pour de nombreux processus biologiques et pathologiques s’activent au niveau des cellules.

« La conception d’un robot qui permet d’appliquer des forces de l’ordre du piconewton in vitro et in vivo répond à une demande croissante dans la communauté scientifique et représente une avancée technologique importante. En revanche, la biocompatibilité du robot peut être à la fois considérée comme un avantage pour des applications in vivo mais également représenter une faiblesse avec une sensibilité aux enzymes qui peuvent dégrader l’ADN. Donc la prochaine étape de notre travail sera d’étudier comment on peut modifier la surface du robot pour qu’il soit moins sensible à l’action des enzymes. Nous allons également tenter de trouver d’autres modes d’activation de notre robot en utilisant par exemple un champ magnétique », souligne Gaëtan Bellot.

[1] Ont également contribué à ces travaux l’Institut de génomique fonctionnelle (CNRS/Inserm/Université de Montpellier), l’Institut des biomolécules Max Mousseron (CNRS/Université de Montpellier/ENSCM), le Centre de recherche Paul Pascal (CNRS/Université de Bordeaux) et le laboratoire Physiologie et médecine expérimentale du cœur et des muscles (CNRS/Inserm/Université de Montpellier.

 

  DOCUMENT        inserm        LIEN

 

 

 

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon