ecole de musique piano
     
menu
 
 
 
 
 
 

LES TROUS NOIRS ET LA FORME DE L'ESPACE

 

 

 

 

 

 

 

LES TROUS NOIRS ET LA FORME DE L'ESPACE

La théorie de la relativité générale, les modèles de trous noirs et les solutions cosmologiques de type " big-bang " qui en découlent, décrivent des espace-temps courbés par la gravitation, sans toutefois trancher sur certaines questions fondamentales quant à la nature de l'espace. Quelle est sa structure géométrique à grande et à petite échelle ? Est-il continu ou discontinu, fini ou infini, possède-t-il des " trous " ou des " poignées ", contient-il un seul feuillet ou plusieurs, est-il " lisse " ou " chiffonné " ? Des approches récentes et encore spéculatives, comme la gravité quantique, les théories multidimensionnelles et la topologie cosmique, ouvrent des perspectives inédites sur ces questions. Je détaillerai deux aspects particuliers de cette recherche. Le premier sera consacré aux trous noirs. Astres dont l'attraction est si intense que rien ne peut s'en échapper, les trous noirs sont le triomphe ultime de la gravitation sur la matière et sur la lumière. Je décrirai les distorsions spatio-temporelles engendrées par les trous noirs et leurs propriétés exotiques : extraction d'énergie, évaporation quantique, singularités, trous blancs et trous de ver, destin de la matière qui s'y engouffre, sites astronomiques où l'on pense les avoir débusqués. Le second aspect décrira les recherches récentes en topologie cosmique, où l'espace " chiffonné ", fini mais de topologie multiconnexe, donne l'illusion d'un espace déplié plus vaste, peuplé d'un grand nombre de galaxies fantômes. L'univers observable acquiert ainsi la forme d'un " cristal " dont seule une maille correspond à l'espace réel, les autres mailles étant des répliques distordues emplies de sources fantômes.

LES TROUS NOIRS ET LA FORME DE L'ESPACE

Texte de la 187e conférence de l’Université de tous les savoirs donnée le 5 juillet 2000.

Les trous noirs et la forme de l'espace
par Jean-Pierre Luminet

Introduction

La question de la forme de l’espace me fascine depuis que, adolescent, j’ai ouvert une encyclopédie d’astronomie à la page traitant de la théorie de la relativité générale d’Einstein. Il y était écrit que, dans la conception relativiste, l’espace-temps a la forme d’un mollusque. Cette image m’avait beaucoup intrigué, et depuis lors, je n’ai eu de cesse d’élucider les mystères implicitement attachés à ce « mollusque universel ». Lorsqu’ils contemplent un beau ciel nocturne, la plupart des gens n’ont d’yeux que pour le spectacle des étoiles, c’est-à-dire le contenu de l’univers. Or, on peut aussi s’émerveiller devant l’invisible contenant : l’espace n’est-il qu’un réceptacle vide et passif qui accueille les corps, ou bien peut-on lui attribuer une forme, une structure, une architecture ? Est-il plat, courbe, rugueux, lisse, cabossé, plissé, etc. ?

L’espace a-t-il une forme ?
Il est sans doute difficile à la plupart d’entre vous d’attribuer une forme à quelque chose d’aussi impalpable et d’abstrait que l’espace. Au cours des siècles, maintes conceptions philosophiques ont tenté de « donner chair » à l’espace en le considérant, par exemple, comme une substance éthérée qui, non seulement contient les corps matériels, mais aussi les imprègne et partage avec eux certaines de ses propriétés structurelles. Toutefois, pour le physicien, les questions sur la forme de l’espace ne sont pertinentes qu’en utilisant le langage des mathématiques, plus spécifiquement celui de la géométrie.

Quel est l’espace géométrique qui est susceptible de représenter l’espace physique ?
Le problème est plus compliqué qu’il ne semble à première vue. Certes, l’espace « immédiat » qui nous environne est correctement décrit par la géométrie euclidienne ordinaire. Mais l’espace microscopique (à très petite échelle) et l’espace cosmologique (à très grande échelle) en diffèrent profondément. À la question de la forme de l’espace, la physique actuelle donne donc des réponses différentes, selon quatre « niveaux » dépendant de l’échelle à laquelle on examine la structure de l’espace. Les niveaux « intermédiaires » 1 & 2 sont assez bien compris, les niveaux « extrêmes » 0 & 3 font l’objet de spéculations théoriques originales.
Niveau 1 : Géométrie (pseudo-) euclidienne
Champ d’application : mécanique classique, relativité restreinte, électrodynamique quantique
À l’échelle « locale », disons entre 10-18 centimètre (longueur actuellement accessible à l’expérimentation) et 1011 mètres (de l’ordre de la distance Terre - Soleil), la géométrie de l’espace physique se décrit très bien par celle de l’espace euclidien ordinaire. « Très bien » signifie que cette structure mathématique sert de cadre naturel aux théories physiques qui, comme la mécanique classique, la relativité restreinte et l’électrodynamique quantique, permettent d’expliquer correctement la quasi-totalité des phénomènes naturels. L’espace y est à trois dimensions, sans courbure. Dans la théorie relativiste, il est couplé au temps au sein d’une géométrie pseudo-euclidienne quadridimensionnelle plate, dite « espace-temps de Minkowski ».
Niveau 2 : Géométrie différentielle en espace (pseudo-) riemannien
Champ d’application : relativité générale, cosmologie
À l’échelle astronomique (système solaire, étoiles, galaxies, univers dans son ensemble), l’interaction dominante qui « sculpte » l’espace physique est la gravité. Celle-ci est décrite par la relativité générale, qui fait apparaître une structure non-euclidienne de l’espace-temps. La géométrie différentielle des variétés riemanniennes permet précisément de décrire de tels espaces courbes. Il y a de nombreuses modélisations possibles. Par exemple, à grande échelle, la courbure est relativement « douce » et uniforme. Les cosmologistes travaillent donc dans le cadre d’espaces à courbure constante. Au voisinage d’objets très compacts, la courbure peut au contraire varier fortement d’un point à l’autre. La géométrie de Schwarzschild est un exemple de modélisation de l’espace-temps physique autour d’un trou noir sphérique.
Niveau 0 : Géométrie multidimensionnelle, géométrie non-commutative, etc.
Champ d’application : théories d’unification, supercordes, gravité quantique
La description de l’espace à l’échelle microscopique (entre 10-33 centimètre et 10-18 centimètre) est liée au plus grand enjeu de la physique actuelle : l’unification des interactions fondamentales. Celle-ci tente de marier deux points de vue extrêmement différents : celui de la mécanique quantique, décrivant les interactions en termes de champs, et celui de la relativité, décrivant la gravité en termes de courbure.
Aucune théorie de « gravité quantique » satisfaisante n’a vu le jour, mais plusieurs scénarios sont étudiés. Dans tous les cas, les conceptions géométriques usuelles sur l’espace et le temps sont bouleversées. Par exemple, la théorie des supercordes introduit des dimensions spatiales supplémentaires ; la géométrie non-commutative décrit un espace-temps granulaire et « flou » ; la géométrodynamique quantique conçoit l’espace-temps comme un océan bouillonnant d’énergie, agité de « vagues » (les fluctuations quantiques du vide) et ponctué « d’écume » (les univers-bulles).
Niveau 4 : Topologie, espaces « chiffonnés »
Champ d’application : structure globale de l’Univers, topologie cosmique
La question de la forme globale de l’espace (à une échelle supérieure à 1025 mètres) pose des problèmes géométriques spécifiques ne relevant plus seulement de la courbure, mais de la topologie de l’espace-temps. Celle-ci n’est incorporée ni dans la relativité générale, ni dans les approches unificatrices de la physique des hautes énergies. Pour reprendre l’image pittoresque du « mollusque universel », il ne s’agit plus de savoir s’il possède des bosses ou des creux, mais de savoir s’il s’agit d’un escargot, d’une limace ou d’un calmar.
Une nouvelle discipline est née il y a quelques années : la topologie cosmique, qui applique aux modèles cosmologiques relativistes les découvertes mathématiques effectuées dans le domaine de la classification topologique des espaces.
La suite de la conférence s’attachera exclusivement à la description du niveau 2 dans le contexte des trous noirs, et du niveau 4 dans le contexte des modèles d’univers chiffonnés.

Les trous noirs
Un vieux conte persan dit :
« Un jour, les papillons tiennent une vaste assemblée parce qu’ils sont tourmentés par le mystère de la flamme. Chacun propose son idée sur la question. Le vieux sage qui préside l’assemblée dit qu’il n’a rien entendu de satisfaisant, et que le mieux à faire est d’aller voir de près ce qu’est la flamme.
Un premier papillon volontaire s’envole au château voisin et aperçoit la flamme d’une bougie derrière une fenêtre. Il revient très excité et raconte ce qu’il a vu. Le sage dit qu’il ne leur apprend pas grand chose.
Un deuxième papillon franchit la fenêtre et touche la flamme, se brûlant l’extrémité des ailes. Il revient et raconte son aventure. Le sage dit qu’il ne leur apprend rien de plus.
Un troisième papillon va au château et se consume dans la flamme. Le sage, qui a vu la scène de loin, dit que seul le papillon mort connaît le secret de la flamme, et qu’il n’y a rien d’autre à dire. »
Cette parabole préfigure le mystère des trous noirs. Ces objets célestes capturent la matière et la lumière sans espoir de retour : si un astronaute hardi s’aventurait dans un trou noir, il ne pourrait jamais en ressortir pour relater ses découvertes.
Les trous noirs sont des astres invisibles
Le concept d’astre invisible a été imaginé par deux astronomes de la fin du XVIIIe siècle, John Michell (1783) et Pierre de Laplace (1796). Dans le cadre de la théorie de l’attraction universelle élaborée par Newton, ils s’étaient interrogés sur la possibilité qu’il puisse exister dans l’univers des astres si massifs que la vitesse de libération à leur surface puisse dépasser la vitesse de la lumière. La vitesse de libération est la vitesse minimale avec laquelle il faut lancer un objet pour qu’il puisse échapper définitivement à l’attraction gravitationnelle d’un astre. Si elle dépasse la vitesse de la lumière, l’astre est nécessairement invisible, puisque même les rayons lumineux resteraient prisonniers de son champ de gravité.

Michell et Laplace avaient donc décrit le prototype de ce qu’on appellera beaucoup plus tard (en 1968) un « trou noir », dans le cadre d’une autre théorie de la gravitation (la relativité générale). Ils avaient cependant calculé les bons « ordres de grandeur » caractérisant l’état de trou noir. Un astre ayant la densité moyenne de l’eau (1g/cm3) et une masse de dix millions de fois celle du Soleil serait invisible. Un tel corps est aujourd’hui nommé « trou noir supermassif ». Les astronomes soupçonnent leur existence au centre de pratiquement toutes les galaxies (bien qu’ils ne soient pas constitués d’eau !). Plus communs encore seraient les « trous noirs stellaires », dont la masse est de l’ordre de quelques masses solaires et le rayon critique (dit rayon de Schwarzschild) d’une dizaine de kilomètres seulement. Pour transformer le Soleil en trou noir, il faudrait le réduire à une boule de 3 kilomètres de rayon ; quant à la Terre, il faudrait la compacter en une bille de 1 cm !
Les trous noirs sont des objets relativistes
La théorie des trous noirs ne s’est véritablement développée qu’au XXe siècle dans le cadre de la relativité générale. Selon la conception einsteinienne, l’espace, le temps et la matière sont couplés en une structure géométrique non-euclidienne compliquée. En termes simples, la matière-énergie confère, localement du moins, une forme à l’espace-temps. Ce dernier peut être vu comme une nouvelle entité qui est à la fois « élastique », en ce sens que les corps massifs engendrent localement de la courbure, et « dynamique », c’est-à-dire que cette structure évolue au cours du temps, au gré des mouvements des corps massifs. Par exemple, tout corps massif engendre autour de lui, dans le tissu élastique de l’espace-temps, une courbure ; si le corps se déplace, la courbure se déplace avec lui et fait vibrer l’espace-temps sous formes d’ondulations appelées ondes gravitationnelles.
La courbure de l’espace-temps peut se visualiser par les trajectoires des rayons lumineux et des particules « libres ». Celles-ci épousent naturellement la forme incurvée de l’espace. Par exemple, si les planètes tournent autour du Soleil, ce n’est pas parce qu’elles sont soumises à une force d’attraction universelle, comme le voulait la physique newtonienne, mais parce qu’elles suivent la « pente naturelle » de l’espace-temps qui est courbé au voisinage du Soleil. En relativité, la gravité n’est pas une force, c’est une manifestation de la courbure de l’espace-temps. C’est donc elle qui sculpte la forme locale de l’univers.
Les équations d’Einstein indiquent comment le degré de courbure de l’espace-temps dépend de la concentration de matière (au sens large du terme, c’est-à-dire incluant toutes les formes d’énergie). Les trous noirs sont la conséquence logique de ce couplage entre matière et géométrie. Le trou noir rassemble tellement d’énergie dans un région confinée de l’univers qu’il creuse un véritable « puits » dans le tissu élastique de l’espace-temps. Toute particule, tout rayon lumineux pénétrant dans une zone critique définie par le bord (immatériel) du puits, sont irrémédiablement capturés.
Comment les trous noirs peuvent-ils se former ?
Les modèles d’évolution stellaire, développés tout au long du XXe siècle, conduisent à un schéma général de l’évolution des étoiles en fonction de leur masse. Le destin final d’un étoile est toujours l’effondrement gravitationnel de son cœur (conduisant à un « cadavre stellaire »), accompagné de l’expulsion de ses couches externes. Il y a trois types de cadavres stellaires possibles :
- La plupart des étoiles (90 %) finissent en « naines blanches », des corps de la taille de la Terre mais un million de fois plus denses, constituées essentiellement de carbone dégénéré. Ce sera le cas du Soleil.
- Les étoiles dix fois plus massives que le Soleil (9,9 %) explosent en supernova. Leur cœur se contracte en une boule de 15 km de rayon, une « étoile à neutrons » à la densité fabuleuse. Elles sont détectables sous la forme de pulsars, objets fortement magnétisés et en rotation rapide dont la luminosité radio varie périodiquement.

- Enfin, si l’étoile est initialement 30 fois plus massive que le Soleil, son noyau est condamné à s’effondrer sans limite pour former un trou noir. On sait en effet qu’une étoile à neutrons ne peut pas dépasser une masse critique d’environ 3 masses solaires. Les étoiles très massives sont extrêmement rares : une sur mille en moyenne. Comme notre galaxie abrite environ cent milliards d’étoiles, on peut s’attendre à ce qu’elle forme une dizaine de millions de trous noirs stellaires.
Quant aux trous noirs supermassifs, ils peuvent résulter, soit de l’effondrement gravitationnel d’un amas d’étoiles tout entier, soit de la croissance d’un trou noir « germe » de masse initialement modeste.
Comment détecter les trous noirs ?
Certains trous noirs peuvent être détectés indirectement s’ils ne sont pas isolés, et s’ils absorbent de la matière en quantité suffisante. Par exemple, un trou noir faisant partie d’un couple stellaire aspire l’enveloppe gazeuse de son étoile compagne. Avant de disparaître, le gaz est chauffé violemment, et il émet une luminosité caractéristique dans la gamme des rayonnements à haute énergie. Des télescopes à rayons X embarqués sur satellite recherchent de tels trous noirs stellaires dans les systèmes d’étoiles doubles à luminosité X fortement variable. Il existe dans notre seule galaxie une douzaine de tels « candidats » trous noirs.
L’observation astronomique nous indique aussi que les trous noirs supermassifs existent vraisemblablement au centre de nombreuses galaxies - dont la nôtre. Le modèle du « trou noir galactique » explique en particulier la luminosité extraordinaire qui est libérée par les galaxies dites « à noyau actif », dont les plus spectaculaires sont les quasars, objets intrinsèquement si lumineux qu’ils permettent de sonder les confins de l’espace.

En 1979, mon premier travail de recherche a consisté à reconstituer numériquement l’apparence d’un trou noir entouré d’un disque de gaz chaud. Les distorsions de l’espace-temps au voisinage du trou noir sont si grandes que les rayons lumineux épousent des trajectoires fortement incurvées permettant, par exemple, d’observer simultanément le dessus et le dessous du disque. J’ai ensuite étudié la façon dont une étoile qui frôle un trou noir géant est brisée par les forces de marée. L’étirement de l’espace est tel que, en quelques secondes, l’étoile est violemment aplatie sous la forme d’une « crêpe flambée ». Les débris de l’étoile peuvent ensuite alimenter une structure gazeuse autour du trou noir et libérer de l’énergie sur le long terme. Ce phénomène de crêpe stellaire, mis en évidence par les calculs numériques, n’a pas encore été observé, mais il fournit une explication plausible au mode d’alimentation des galaxies à noyau actif.
La physique externe des trous noirs
La théorie des trous noirs s’est essentiellement développée dans les années 1960-70. Le trou noir, comme tous les objets, tourne sur lui-même. On peut l’envisager comme un « maelström cosmique » qui entraîne l’espace-temps dans sa rotation. Comme dans un tourbillon marin, si un vaisseau spatial s’approche trop près, il commence par être irrésistiblement entraîné dans le sens de rotation et, s’il franchit une zone critique de non-retour, il tombe inéluctablement au fond du vortex.
Le temps est également distordu dans les parages du trou noir. Le temps « apparent », mesuré par toute horloge extérieure, se ralentit indéfiniment, tandis que le temps « propre », mesuré par une horloge en chute libre, n’égrène que quelques secondes avant d’être anéantie au fond du trou. Si un astronaute était filmé dans sa chute vers un trou noir, personne ne le verrait jamais atteindre la surface ; les images se figeraient à jamais à l’instant où l’astronaute semblerait atteindre la frontière du trou noir. Or, selon sa propre montre, l’astronaute serait bel et bien avalé par le trou en quelques instants.
Le théorème capital sur la physique des trous noirs se formule de façon pittoresque : « un trou noir n’a pas de poils. » Il signifie que, lorsque de la matière-énergie disparaît à l’intérieur d’un trou noir, toutes les propriétés de la matière telles que couleur, forme, constitution, etc., s’évanouissent, seules subsistent trois caractéristiques : la masse, le moment angulaire et la charge électrique. Le trou noir à l’équilibre est donc l’objet le plus « simple » de toute la physique, car il est entièrement déterminé par la donnée de ces trois paramètres. Du coup, toutes les solutions exactes de la théorie de la relativité générale décrivant la structure de l’espace-temps engendré par un trou noir sont connues et étudiées intensivement.
Par sa nature même, un trou noir est inéluctablement voué à grandir. Cependant, la théorie a connu un rebondissement intéressant au début des années 1980, lorsque Stephen Hawking a découvert que les trous noirs « microscopiques » (hypothétiquement formés lors du big-bang) se comporteraient à l’inverse des gros trous noirs. Régis par la physique quantique et non plus seulement par la physique gravitationnelle, ces micro-trous noirs ayant la taille d’une particule élémentaire mais la masse d’une montagne s’évaporeraient car ils seraient fondamentalement instables. Ce phénomène « d’évaporation quantique » suscite encore beaucoup d’interrogations. Aucun micro-trou noir n’a été détecté, mais leur étude théorique permet de tisser des liens entre la gravité et la physique quantique. Des modèles récents suggèrent que le résultat de l’évaporation d’un trou noir ne serait pas une singularité ponctuelle « nue », mais une corde – objet théorique déjà invoqué par des théories d’unification des interactions fondamentales.

L’intérieur des trous noirs
Le puits creusé par le trou noir dans le tissu élastique de l’espace-temps est-il « pincé » par un nœud de courbure infinie – auquel cas toute la matière qui tomberait dans le trou noir se tasserait indéfiniment dans une singularité ? Ou bien le fond du trou noir est-il « ouvert » vers d’autres régions de l’espace-temps par des sortes de tunnels ? Cette deuxième possibilité, apparemment extravagante, est suggérée par certaines solutions mathématiques de la relativité. Un trou de ver serait une structure topologique exotique ressemblant à une « poignée d’espace-temps » qui relierait deux régions de l’univers, dont l’une serait un trou noir et l’autre un « trou blanc ». Ces raccourcis d’espace-temps, qui permettraient de parcourir en quelques fractions de seconde des millions d’années lumière sans jamais dépasser la vitesse de la lumière, ont fasciné les physiciens tout autant que les écrivains de science-fiction. Des études plus détaillées montrent que de tels trous de ver ne peuvent pas se former dans l’effondrement gravitationnel d’une étoile : aussitôt constitués, ils seraient détruits et bouchés avant qu’aucune particule n’ait le temps de les traverser. Des modèles suggèrent que les trous de ver pourraient cependant exister à l’échelle microscopique. En fait, la structure la plus intime de l’espace-temps pourrait être constituée d’une mousse perpétuellement changeante de micro-trous noirs, micro-trous blancs et mini-trous de ver, traversés de façon fugace par des particules élémentaires pouvant éventuellement remonter le cours du temps !

La forme globale de l’univers
À l'échelle de la cosmologie, le « tissu élastique » de l’espace-temps doit être conçu comme chargé d’un grand nombre de billes - étoiles, galaxies, amas de galaxies - réparties de façon plus ou moins homogène et uniforme. La courbure engendrée par la distribution des corps est donc elle-même uniforme, c’est-à-dire constante dans l’espace. En outre, la distribution et le mouvement de la matière universelle confèrent à l’espace-temps une dynamique globale : l’univers est en expansion ou en contraction.
La cosmologie relativiste consiste à rechercher des solutions exactes de la relativité susceptibles de décrire la structure et l’évolution de l’univers à grande échelle. Les modèles à courbure spatiale constante ont été découverts par Alexandre Friedmann et Georges Lemaître dans les années 1920. Ces modèles se distinguent par leur courbure spatiale et par leur dynamique.
Dans la version la plus simple :
- Espace de courbure positive (type sphérique)
L’espace, de volume fini (bien que dans frontières), se dilate initialement à partir d’une singularité (le fameux « big-bang »), atteint un rayon maximal, puis se contracte pour s’achever dans un « big-crunch ». La durée de vie typique d’un tel modèle d’univers est une centaine de milliards d’années.
- Espace de courbure nulle (type euclidien) ou négative (type hyperbolique)
Dans les deux cas, l’expansion de l’univers se poursuit à jamais à partir d’un big-bang initial, le taux d’expansion se ralentissant toutefois au cours du temps.

La dynamique ci-dessus est complètement modifiée si un terme appelé « constante cosmologique » est ajouté aux équations relativistes. Ce terme a pour effet d’accélérer le taux d’expansion, de sorte que même un espace de type sphérique peut être « ouvert » (c’est-à-dire en expansion perpétuelle) s’il possède une constante cosmologique suffisamment grande. Des observations récentes suggèrent que l’espace cosmique est proche d’être euclidien (de sorte que l’alternative sphérique / hyperbolique n’est nullement tranchée !), mais qu’il est en expansion accélérée, ce qui tend à réhabiliter la constante cosmologique (sous une forme associée à l’énergie du vide).
Je ne développerai pas davantage la question, car elle figure au programme de la 186e conférence de l’Utls donnée par Marc Lachièze-Rey.
Quelle est la différence entre courbure et topologie ?
Avec la cosmologie relativiste, disposons-nous d’une description de la forme de l’espace à grande échelle ? On pourrait le croire à première vue, mais il n’en est rien. Même la question de la finitude ou de l’infinitude de l’espace (plus grossière que celle concernant sa forme) n’est pas clairement tranchée. En effet, si la géométrie sphérique n’implique que des espaces de volume fini (comme l’hypersphère), les géométries euclidienne et hyperbolique sont compatibles tout autant avec des espaces finis qu’avec des espaces infinis. Seule la topologie, cette branche de la géométrie qui traite de certaines formes invariantes des espaces, donne des informations supplémentaires sur la structure globale de l’espace - informations que la courbure (donc la relativité générale) ne saurait à elle seule fournir.
Pour s’assurer qu’un espace est localement euclidien (de courbure nulle), il suffit de vérifier que la somme des angles d’un triangle quelconque fait bien 180° - ou, ce qui revient au même, de vérifier le théorème de Pythagore. Si cette somme est supérieure à 180°, l’espace est localement sphérique (courbé positivement), et si cette somme est inférieure à 180°, l’espace est localement hyperbolique (courbé négativement).

Cependant, un espace euclidien n’est pas nécessairement aussi simple que ce que l’on pourrait croire. Par exemple, une surface euclidienne (à deux dimensions, donc) n’est pas nécessairement le plan. Il suffit de découper une bande dans le plan et d’en coller les extrémités pour obtenir un cylindre. Or, à la surface du cylindre, le théorème de Pythagore est tout autant vérifié que dans le plan d’origine. Le cylindre est donc une surface euclidienne de courbure strictement nulle, même si sa représentation dans l’espace (fictif) de visualisation présente une courbure « extrinsèque ». Bien qu’euclidien, le cylindre présente une différence fondamentale d’avec le plan : il est fini dans une direction. C’est ce type de propriété qui relève de la topologie, et non pas de la courbure. En découpant le plan et en le recollant selon certains points, nous n’avons pas changé sa forme locale (sa courbure) mais nous avons changé radicalement sa forme globale (sa topologie). Nous pouvons aller plus loin en découpant le cylindre en un tube de longueur finie, et en collant les deux extrémités circulaires. Nous obtenons un tore plat, c’est-à-dire une surface euclidienne sans courbure, mais fermée dans toutes les directions (de superficie finie). Une bactérie vivant à la surface d’un tore plat ne ferait pas la différence avec le plan ordinaire, à moins de se déplacer et de faire un tour complet du tore. À trois dimensions, il est possible de se livrer à ce même genre d’opérations. En partant d’un cube de l'espace euclidien ordinaire, et en identifiant deux à deux ses faces opposées, on crée un « hypertore », espace localement euclidien de volume fini.

Les espaces chiffonnés
Du point de vue topologique, le plan et l’espace euclidien ordinaire sont monoconnexes, le cylindre, le tore et l’hypertore sont multiconnexes. Dans un espace monoconnexe, deux points quelconques sont joints par une seule géodésique (l’équivalent d'une droite en espace courbe), tandis que dans un espace multiconnexe, une infinité de géodésiques joignent deux points. Cette propriété confère aux espaces multiconnexes un intérêt exceptionnel en cosmologie. En effet, les rayons lumineux suivent les géodésiques de l'espace-temps. Lorsqu’on observe une galaxie lointaine, nous avons coutume de croire que nous la voyons en un unique exemplaire, dans une direction donnée et à une distance donnée. Or, si l’espace cosmique est multiconnexe, il y a démultiplication des trajets des rayons lumineux, donnant des images multiples de la galaxie observée. Comme toute notre perception de l'espace provient de l’analyse des trajectoires des rayons lumineux, si nous vivions dans un espace multiconnexe nous serions plongés dans une vaste illusion d’optique nous faisant paraître l’univers plus vaste que ce qu’il n'est; des galaxies lointaines que nous croirions « originales » seraient en réalités des images multiples d’une seule galaxie, plus proche dans l'espace et dans le temps.
Figure : Un univers très simple à deux dimensions illustre comment un observateur situé dans la galaxie A (sombre) peut voir des images multiples de la galaxie B (claire). Ce modèle d’univers, appelé tore, est construit à partir d’un carré dont on a « recollé » les bords opposés : tout ce qui sort d’un côté réapparaît immédiatement sur le côté opposé, au point correspondant. La lumière de la galaxie B peut atteindre la galaxie A selon plusieurs trajets, de sorte que l’observateur dans la galaxie A voit les images de la galaxie B lui parvenir de plusieurs directions. Bien que l’espace du tore soit fini, un être qui y vit a l’illusion de voir un espace, sinon infini (en pratique, des horizons limitent la vue), du moins plus grand que ce qu’il n’est en réalité. Cet espace fictif a l’aspect d’un réseau construit à partir d’une cellule fondamentale, qui répète indéfiniment chacun des objets de la cellule.

Les modèles d’ univers chiffonné permettent de construire des solutions cosmologiques qui, quelle que soit leur courbure, peuvent être finies ou infinies, et décrites par des formes (topologies) d’une grande subtilité. Ces modèles peuvent parfaitement être utilisés pour décrire la forme de l’espace à très grande échelle. Un espace chiffonné est un espace multiconnexe de volume fini, de taille est plus petite que l’univers observé (dont le rayon apparent est d’environ 15 milliards d’années-lumière).
Les espaces chiffonnés créent un mirage topologique qui démultiplie les images des sources lumineuses. Certains mirages cosmologiques sont déjà bien connus des astronomes sous le nom de mirages gravitationnels. Dans ce cas, la courbure de l’espace au voisinage d'un corps massif situé sur la ligne de visée d’un objet plus lointain, démultiplie les trajets des rayons lumineux provenant de l'arrière-plan. Nous percevons donc des images fantômes regroupées dans la direction du corps intermédiaire appelé « lentille ». Ce type de mirage est dû à la courbure locale de l’espace autour de la lentille.
Dans le cas du mirage topologique, ce n’est pas un corps particulier qui déforme l’espace, c’est l’espace lui-même qui joue le rôle de la lentille. En conséquence, les images fantômes sont réparties dans toutes les directions de l'espace et toutes les tranches du passé. Ce mirage global nous permettrait de voir les objets non seulement sous toutes leurs orientations possibles, mais également à toutes les phases de leur évolution.

Tests observationnels de l'univers chiffonnés
Si l’espace est chiffonné, il l’est de façon subtile et à très grande échelle, sinon nous aurions déjà identifié des images fantômes de notre propre galaxie ou d'autres structures bien connues. Or, ce n’est pas le cas. Comment détecter la topologie de l’univers? Deux méthodes d’analyse statistique ont été développées récemment. L’une, la cristallographie cosmique, tente de repérer certaines répétitions dans la distribution des objets lointains. L’autre étudie la distribution des fluctuations de température du rayonnement fossile. Ce vestige refroidi du big-bang permettrait, si l’espace est chiffonné, de mettre en évidence des corrélations particulières prenant l’aspect de paires de cercles le long desquels les variations de température cosmique d’un point à l’autre seraient les mêmes.
Les projets expérimentaux de cristallographie cosmique et de détection de paires de cercles corrélés sont en cours. Pour l’instant, la profondeur et la résolution des observations ne sont pas suffisantes pour tirer des conclusions sur la topologie globale de l’espace. Mais les prochaines années ouvrent des perspectives fascinantes ; elles livreront à la fois des sondages profonds recensant un très grand nombre d’amas lointains de galaxies et de quasars, et des mesures à haute résolution angulaire du rayonnement fossile. Nous saurons peut-être alors attribuer une forme à l'espace.
Bibliographie
Jean-Pierre Luminet, Les trous noirs, Le Seuil / Points Sciences, 1992.
Jean-Pierre Luminet, L’univers chiffonné, Fayard, 2001.

 

 VIDEO       CANAL  U         LIEN 

 
 
 
 

LA COSMOLOGIE MODERNE : LES NOUVEAUX OUTILS D'OBSERVATION DE L'UNIVERS

 

 

 

 

 

 

 

LA COSMOLOGIE MODERNE : LES NOUVEAUX OUTILS D'OBSERVATION DE L'UNIVERS

La nuit semble être noire. Il n'en est rien. L'univers baigne dans un rayonnement aux multiples origines. Dès le 17e siècle, le physicien Olberg montre tout le parti pouvant être tiré de la brillance du ciel. Si l'univers était uniforme et infini, la brillance du ciel due à la superposition de l'émission de toutes les sources qui le composent, devrait être infinie. Le fait qu'elle ne le soit pas, montre que l'univers n'est ni uniforme, ni infini. Il faut attendre le début du XXe siècle pour comprendre les implications profondes du paradoxe de Olberg. Grâce aux observatoires spatiaux, les astrophysiciens modernes élargissent leur champ d'investigation à tout le domaine du rayonnement électromagnétique. Les satellites américains permettent d'achever la mesure complète du spectre du rayonnement présent dans l'univers. Ces observatoires permettent également d'identifier les origines de ce rayonnement. Le recensement de l'univers est en passe d'être achevé. C'est en soi un résultat spectaculaire, qui marque la fin d'une recherche qui a commencé il y a plus de deux mille ans. Les résultats obtenus montrent que comme l'a supposé Olberg, l'univers n'est ni uniforme, ni infini, mais qu'en plus lui et ses constituants ont évolué très fortement depuis leur origine. La prochaine génération de télescopes, au sol, et dans l'espace va s'attaquer à la compréhension de cette évolution. Mais l'univers n'est pas fait que de rayonnement. Il contient aussi des particules. Depuis les années 1930 on sait que plus de 90% de cette matière échappe à la détection. Des recherches sont activement poursuivies par les astrophysiciens et les physiciens des particules pour élucider ce problème. Par contre des progrès spectaculaires ont été très récemment obtenus sur la répartition de cette matière dans l'univers, en utilisant la propriété de déflexion de la lumière par une masse gravitationnelle prédite par la relativité générale d'Einstein. L'univers lointain nous apparaît déformé car la lumière émise par les galaxies lointaines ne se propage pas en ligne droite. Son parcours s'infléchit en passant à proximité de masses importantes. Les astrophysiciens ont mis au point des techniques permettant de calculer ces déformations, et donc de calculer la distribution de la matière noire responsable de ces déformations. C'est un domaine en plein développement.

Texte de la 184ème conférence de l’Université de tous les savoirs donnée le 2 juillet 2000.
La cosmologie moderne : les nouveaux outils d’observations de l’Univers par Laurent Vigroux
La nuit semble être noire. Il n’en est rien. Avec les instruments d’observations modernes, la nuit est brillante. Mais le paradoxe est qu’elle ne soit ni noire, ni infiniment claire. Brillante certes, mais pourquoi si peu ? Dès le XVIIe siècle, le physicien Danois Olberg avait montré tout le parti que l’on peut tirer de la brillance du ciel. Si l’Univers était uniforme et infini, la brillance du ciel due à la superposition de l’émission de toutes les sources qui le composent devrait être infinie. Heureusement pour la vie sur Terre, il n’en est rien. Il a fallu attendre le milieu du vingtième siècle pour comprendre les implications profondes de ce paradoxe. Le cadre de cette compréhension a été fourni par Einstein avec sa théorie de la gravitation. Les observations de Hubble dans les années 1920-1930 ont montré que l’Univers était en expansion. On sait maintenant que les constituants de l’Univers ne sont pas immuables, ils évoluent dans le temps. On sait qu’ils ne sont pas répartis de manière uniforme dans l’espace, et on sait que l’Univers observable est fini. C’est pourquoi la nuit n’est que grise. Notre compréhension de la cosmologie a fait des progrès spectaculaires ces vingt dernières années. Cela tient aux progrès des observations, grâce surtout aux observatoires spatiaux, mais aussi aux progrès spectaculaires de la théorie et des simulations numériques. Quels sont ces progrès, c’est ce que nous allons passer en revue dans la suite de cette conférence.
Le rayonnement
La principale source d’information sur l’Univers et ses constituants provient de la lumière. Par lumière, on entend l’ensemble du spectre des ondes électromagnétiques, qui s’étend des rayons gamma et X, à haute énergie, jusqu’aux ondes micro-ondes et radios à basse énergie, en passant par la lumière visible, à laquelle nous sommes plus habitués. Le véhicule d’information de la lumière est une particule appelée photon, et, dans les théories de physique moderne, on peut décrire la propagation de la lumière aussi bien en termes d’ondes, que de photons. En général, à basse énergie, le nombre de photons reçus par un télescope moderne est très élevé, de l’ordre de plusieurs centaines de milliers par seconde, et on préfère décrire les phénomènes en termes d’ondes. A haute énergie, les photons sont plus rares, de l’ordre de quelques photons par seconde en rayons X, et de quelques photons par jour dans les gammas de très grande énergie, et on préfère décrire les phénomènes en terme de photons. Mais la physique sous-jacente reste la même. L’avantage principal de la lumière est qu’elle se propage en ligne droite sans être trop absorbée. Elle permet donc d’observer des sources très lointaines et de les localiser. Depuis des temps immémoriaux, la lumière a été le principal, sinon le seul, moyen d’observation du ciel. Les deux principales sources de lumière sont un rayonnement fossile lié aux premières étapes de l’évolution de l’Univers, et la somme des rayonnements émis par les constituants de l’Univers, étoiles, galaxies et amas de galaxies.
Le rayonnement fossile
Contrairement aux rêves des technocrates, les plus grandes découvertes sont le fruit d’actions non préméditées. Il en est ainsi de la découverte du rayonnement fossile. La guerre de
1
39-45 a eu de nombreux effets négatifs. Elle a néanmoins entraîné un progrès notable des techniques. Hiroshima a montré que ce n’était pas toujours pour le meilleur. Mais les progrès des techniques des radars ont été à l’origine des progrès spectaculaires de la radioastronomie après guerre. Le relais fut pris ensuite par le développement des télécommunications. C’est ainsi que deux ingénieurs de la Bell Telephone, Penzias et Wilson, en essayant de régler une antenne très sensible, ont buté sur un bruit de fond isotrope et continu. L’étude de ce bruit de fond a permis de l’identifier à un rayonnement prédit dans le cadre des théories d’expansion de l’Univers. Contrairement à ce que l’on affirme souvent, ce rayonnement n’est pas lié au big-bang. Il est produit bien après l’explosion initiale. Il existe dans n’importe quelle théorie d’expansion qui prédit que l’Univers est passé dans des phases suffisamment chaudes et denses pour que les atomes soient entièrement ionisés. Dans ces conditions, l’Univers est rempli de protons, de noyaux, d’électrons et de photons. Les photons interagissent avec les électrons. Ils sont en équilibre avec eux, et ne peuvent pas se propager sur de grandes distances. A cause de l’expansion de l’Univers, la matière se refroidit, jusqu’au moment où les atomes se forment. Les électrons se combinent avec les noyaux pour former des atomes. L’Univers devient alors transparent pour les photons, qui n’ont plus rien pour interagir. Le spectre d’énergie des photons est alors celui d’un corps noir à la température de l’Univers à l’époque de la recombinaison. Par la suite, la température de ce corps noir se refroidit du fait de l’expansion de l’Univers. Il est à l’heure actuelle voisin de 2,7°K, c’est à dire -270,3°C. C’est pour cela que l’on ne l’observe que dans le domaine des micro-ondes et des ondes radio. Le pic de l’émission se trouve vers 1,4 mm. Depuis la découverte initiale, il aura fallu trente ans pour que l’on puisse mesurer ce spectre d’émission de corps noir cosmologique avec une grande précision. Cela fut effectué au moyen du satellite américain COBE lancé en 1989. On peut maintenant affirmer avec certitude que cette émission est bien d’origine cosmologique.
Ce rayonnement est isotrope et uniforme avec une très grande précision. On peut néanmoins déceler des petites déviations, qui, traduites en termes de température, correspondraient à des fluctuations de quelques micro kelvin. C’est-à-dire des fluctuations de quelques parties par million. Ces fluctuations dans le spectre des photons correspondent à des fluctuations de densité des électrons à l’époque de la recombinaison. L’Univers était alors presque homogène, mais pas tout à fait. Ces fluctuations de densité ont par la suite donné naissance aux galaxies et aux amas de galaxies. Mesurer les fluctuations de température du corps noir cosmologique revient à déterminer les fluctuations de densité pratiquement à l’origine du monde. COBE fut le premier observatoire qui permit de prouver l’existence de ces fluctuations. Malheureusement, ce résultat est peu contraignant pour les modèles cosmologiques, car les échelles angulaires auxquelles COBE avait accès sont sans commune mesure avec la taille des galaxies et des amas que l’on observe aujourd’hui. COBE a prouvé que l’Univers n’était pas complètement homogène ; il n’a pas permis de déterminer dans quel type d’univers nous vivons. Pour progresser, il faut réaliser des instruments qui ont une résolution angulaire voisine de quelques minutes d’arc, bien mieux que les 7 degrés de COBE. BOOMERANG, un télescope américain italien, lancé en 1999 par un ballon dans un vol circum-antarctique de quinze jours, a réussi pour la première fois à fournir une carte des fluctuations à des échelles angulaires de l’ordre de la vingtaine de minutes d’arc. L’analyse de ces fluctuations a montré qu’elles impliquaient un univers de type plat. Rappelons qu’il y a trois types de géométries possibles dans les modèles d’univers compatibles avec la relativité générale d’Einstein. Ces univers sont définis par leur courbure, positive, négative ou nulle. Les résultats de BOOMERANG semblent montrer que nous sommes dans ce dernier cas, c’est-à-dire le modèle le plus simple, le plus banal. Tant
2
pis. Pour être tout à fait certain de ces résultats, il faudra attendre le satellite européen PLANCK Surveyor, qui sera lancé en 2007 par l’Agence Spatiale Européenne. Ce satellite aura une meilleure résolution angulaire que BOOMERANG et les instruments similaires qui sont en cours de réalisation dans divers pays, dont la France, et surtout, il effectuera une cartographie complète du ciel, ce que ne feront pas les autres projets. Vous voulez savoir dans quel univers vous vivez ? Attendez 2007 et vous aurez la réponse.
L’Univers et ses constituants
L’étude du corps noir cosmologique permet de voir quelle était la structure de l’Univers à ses débuts. Cela n’indique en rien comment se sont formés les objets, galaxies, ou amas de galaxies, que nous observons dans notre environnement proche. Heureusement, nous pouvons utiliser une loi physique bien connue pour remonter le temps : la vitesse finie de la lumière. Observer une galaxie située à un milliard d’années lumière, c’est l’observer telle qu’elle était il y a un milliard d’années. La pêche aux galaxies jeunes consiste à aller rechercher les plus lointaines. Malheureusement, une autre loi de la physique vient contrarier ce plan : la luminosité apparente d’un objet diminue comme le carré de la distance de cet objet ; c’est-à-dire très rapidement. Projetons une galaxie dix fois plus loin, elle nous apparaîtra cent fois plus faible. Pour donner un ordre de grandeur, une galaxie comme la nôtre située à 5 milliards d’années lumière, soit à la moitié de son âge actuel, nous apparaît cent fois moins brillante que le ciel d’une nuit noire. Autant dire que la recherche des galaxies jeunes nécessite de très grands télescopes, qui sont les seuls à avoir un pouvoir collecteur suffisant pour détecter les galaxies les plus lointaines. C’est pourquoi, cette recherche ne s’est avérée fructueuse qu’après la mise en service des grands télescopes de la classe 8-10 m de diamètre. Les premiers furent les télescopes Keck situé au sommet du Mauna Kea dans l’île d’Hawaii. L’Europe n’est pas en reste avec les quatre télescopes de 8 m situés dans le désert d’Atacama, et qui constituent le Very Large Telescope. En fait la recherche a commencé avec le Hubble Space Telescope, satellite de la NASA avec une forte participation de l’ESA. Le fait d’être dans un satellite, au-dessus de l’atmosphère terrestre, permet d’avoir des images beaucoup plus piquées qu’au sol. C’est un atout indispensable pour détecter les objets les plus faibles. La stratégie qui a été suivie ces dix dernières années a consisté à détecter des galaxies lointaines avec le Hubble Space Telescope, puis à les caractériser avec les télescopes géants au sol. Cette méthode s’est révélée payante, puisque entre 1996 et 1998, plusieurs groupes ont réussi à démontrer que les galaxies lointaines étaient différentes des galaxies locales. Si on retrouve bien le pendant des galaxies proches, on trouve aussi pléthore de galaxies plus petites, et qui ont des couleurs plus bleues que les galaxies locales. Cette couleur est due à la présence d’étoiles jeunes. Ces petites galaxies sont donc dans des phases intenses de formation d’étoiles, environ trois fois le taux observé dans les galaxies proches.
Chercher des galaxies jeunes en utilisant la lumière visible, est-ce la bonne approche ? Pour répondre à cette question, il faut savoir quels sont les mécanismes d’émission de lumière par les galaxies. La source principale d’énergie est la gravitation. C’est elle qui permet à la galaxie d’exister en tant qu’objet individuel. C’est elle aussi, qui permet aux étoiles de se former et d’atteindre en leur centre des densités et des températures suffisantes pour que les réactions nucléaires se déclenchent. La source principale de rayonnement d’une galaxie est due aux étoiles qui la peuplent. Une galaxie normale contient quelques centaines de milliards d’étoiles. L’énergie nucléaire dégagée en leur sein se transforme en rayonnement. Le soleil nous éclaire à l’énergie

3
nucléaire. Paradoxe amusant sur les énergies propres. Une galaxie n’est pas composée seulement d’étoiles. Elle est aussi remplie de gaz et de poussières. Ces poussières interstellaires sont des grains allant de quelques centaines d’atomes, jusqu’à des grains microscopiques de quelques microns de longueur. Ils se décomposent en deux grandes familles, des grains carbonés, et des silicates. Ces grains absorbent une grande partie du rayonnement des étoiles. Du coup, ils sont chauffés et émettent eux-mêmes de la lumière. Certes, c’est un chauffage modeste, puisque la température moyenne des grains interstellaires est voisine de 20°K, soit -250°C. Cela est néanmoins suffisant pour que cette émission soit mesurable dans l’infrarouge. Ce processus de transformation de l’énergie, absorption du rayonnement des étoiles, chauffage des poussières et ré-émission dans l’infrarouge peut être si efficace que dans des cas extrêmes, des galaxies rayonnent presque 100 % de leur énergie dans l’infrarouge. Cela fut une des grandes découvertes du satellite IRAS lancé en 1983 et réalisé en partenariat américain, anglais et hollandais. Ce satellite a été à l’origine d’une lignée de satellites dédiés à l’étude du ciel en infrarouge : ISO, européen lancé en 1995, SIRTF américain qui sera lancé en 2002 et FIRST, européen, qui sera lancé en 2007. Chacun d’eux représente un gain en termes de sensibilité, couverture en longueur d’onde et résolution spatiale. En combinant les observations d’ISO, et celles de COBE, on a pu montrer que les galaxies émettent globalement 3 fois plus d’énergie dans l’infrarouge que dans le visible et l’ultraviolet. ISO a montré que, lorsqu’elles avaient la moitié de leur âge actuel, les galaxies étaient beaucoup plus souvent de forts émetteurs infrarouges. Si seulement 3 % des galaxies actuelles émettent plus d’énergie dans l’infrarouge que dans le visible, elles étaient 30 % dans ce cas il y a 5 milliard d’années. Quelle est l’origine de ce phénomène ? Selon toute vraisemblance, il s’agit d’épisodes de formation d’étoiles intenses qui se sont déroulées dans le passé. Par l’étude des galaxies ultra lumineuses en infrarouge, découvertes par IRAS, on sait que ces galaxies sont en interaction avec d’autres galaxies et qu'elles subissent des flambées de formation d’étoiles très intenses, à la suite de ces interactions. Les observations dans le visible ont montré qu’il y avait, il y a quelque 5 milliards d’années, une population de petites galaxies qui n’ont pas leur équivalent de nos jours ; les observations en infrarouge montrent que les grandes galaxies de l’époque subissaient des flambées de formation d’étoiles liées à des interactions entre galaxies. La tentation est forte de réconcilier ces deux observations dans un scénario où les petites galaxies sont progressivement avalées par les grosses, entraînant ces épisodes de forte émission infrarouge. La vie des galaxies n’est pas plus tranquille que celle des êtres vivants. Les gros mangent les petits. Ce processus de fusion hiérarchique est prédit par les modèles cosmologiques. La rapidité avec laquelle il se déroule dépend fortement des paramètres du modèle. On peut donc par l’étude des galaxies lointaines contraindre les modèles et la valeur de leurs paramètres. SIRTF, et surtout FIRST permettront d’affiner cette vision, et surtout de pouvoir retracer dans le temps cette évolution. ISO n’a pu que décrire ce qui s’est passé lors des cinq derniers milliards d’années, FIRST permettra de remonter presque jusqu’au début de l’histoire des galaxies.
ISO, SIRTF et FIRST permettent de détecter ces galaxies lointaines ; ils permettent d’en mesurer le flux en fonction de leur longueur d’onde ; leur faible résolution angulaire ne leur permet pas d’en réaliser de véritables images. Pour ces observatoires, les galaxies sont des points. Pour en réaliser des images, il faut utiliser un autre principe. Même dans l’espace, la résolution angulaire d’un télescope est limitée par un phénomène appelé diffraction. Il est impossible de résoudre deux sources qui ont séparées par des angles plus petit qu’un angle limite égal au diamètre du télescope divisé par la longueur d’onde de l’observation. Pour un télescope de 2 m en orbite, le pouvoir séparateur est limité dans le visible à 0.1 seconde d’arc, soit 1/36000 de

4
degré. Cela peut paraître peu, mais c’est déjà trop pour réaliser des véritables images d’objets qui ne font que quelques secondes d’arc de diamètre, comme les galaxies qui nous intéressent. Le diamètre des télescopes en orbite est limité par les capacités de lancement. Même si les USA et l’Europe envisagent de lancer vers 2010 un télescope de 8 m de diamètre en orbite, le New Generation Space Telescope, cela restera encore très loin de ce qu’il faut pour pouvoir faire des images de ces galaxies. Sur terre, à ce phénomène de diffraction se rajoute une déformation des images due à la turbulence atmosphérique ; les images ont des résolutions de l’ordre de la seconde d’arc, les bonnes nuits. La seule solution pour s’affranchir, soit de la diffraction, soit de la turbulence atmosphérique, c’est d’utiliser un autre principe d’imagerie : les interférences. Comme on l’apprend dans les classes de physique, si l’on combine la lumière captée par deux télescopes, on obtient un système de franges noires et brillantes, qui dépend de la phase respective des ondes lumineuses qui arrivent sur les deux télescopes. En analysant le système de frange, on peut calculer le déphasage des deux ondes, et donc en déduire leur direction d’origine. L’avantage de cette méthode est que l’interfrange entre les franges brillantes et sombres dépend du rapport entre la distance entre les deux télescopes et la longueur d’onde de l’observation. En combinant deux télescopes distants de 100 m, on peut obtenir le même pouvoir séparateur qu’avec un télescope monolithique de 100 m de diamètre, et ce, quelque soit le diamètre des télescopes de l’interféromètre. Ce principe est utilisé depuis de nombreuses années en radioastronomie. Il commence à être utilisé dans le visible. Le Very Large Telescope européen aura un mode interféromètrique combinant la lumière reçue par les quatre télescopes qui le composent. Mais l’instrument privilégié pour l’étude des galaxies lointaines sera ALMA. L’Atacama Large Millimeter Array sera un réseau de 64 antennes de 12 m de diamètre chacune, qui sera installé de manière conjointe par les américains et les européens dans le désert de l’Atacam à 5000 m d’altitude, au Chili. Il fonctionnera dans l’infrarouge lointain et le submillimétrique. Sa mise en service est prévue vers 2010. Il permettra d’obtenir des images avec une résolution angulaire meilleure qu'un centième de seconde d’arc. Enfin, nous pourrons réellement voir à quoi ressemble une galaxie jeune.
La matière
L’Univers n’est pas constitué que de rayonnement, il est aussi matériel. Les étoiles, les galaxies ont été découvertes il y a longtemps. Mais cela ne fait pas le compte. Dès 1935, l’astronome Zwycky, en utilisant le télescope du mont Palomar, avait montré qu’il devait y avoir une quantité de matière importante qui n’avait pas encore été découverte. Il était arrivé à cette conclusion en mesurant les vitesses des galaxies dans les amas de galaxies. Depuis Newton, on sait qu’il existe une relation entre l’accélération des corps et la masse gravitationnelle. Si on augmentait la masse du soleil, la terre tournerait plus vite autour du soleil. Inversement, si on connaît la distance de la terre au soleil et la vitesse de rotation de la terre, on peut en déduire la masse du soleil. Il en est de même avec les galaxies dans un amas. La mesure de la vitesse des galaxies dans un amas permet de calculer la masse de l’amas. Comme on connaît la masse des galaxies, de par leur luminosité, il est facile de comparer les deux estimations. Problème : la masse estimée par la dynamique est dix fois plus grande que celle identifiée dans les galaxies. On a trouvé par la suite que les galaxies tournaient également trop vite pour leur masse identifiée dans les étoiles. Il existe donc une composante de matière cachée, qui représente presque 90 % de la masse de l’Univers. Bien que les étoiles et les galaxies soient des objets brillants et

5
remarquables, elles ne représentent qu’une infime partie de l’Univers. Qu’est ce que cette masse cachée ?
Depuis une cinquantaine d’années, les astrophysiciens l’ont cherché sous toutes les formes possibles. D’abord de la matière entre les étoiles ; on a trouvé un milieu interstellaire composé de gaz et de poussières, mais il ne représente qu’un dixième de la masse des galaxies. On a postulé un milieu gazeux dans les amas de galaxies, entre les galaxies. On l’a trouvé. Il s’agit d’un gaz très peu dense, un noyau par litre, et très chaud, quelques dizaines de millions de degrés. Ce milieu a été découvert dans les années 70 grâce à son émission dans les rayons X. Mais là encore, cela ne suffit pas, bien que ce gaz représente une masse supérieure d’un facteur 2 à la masse présente dans les galaxies. On l’a cherché sous la forme d’étoiles isolées de très faible masse, des gros Jupiter en somme. Ces étoiles sont trop petites pour que des réactions nucléaires s’y déclenchent. Elles restent donc sombres, d’où leur nom de naines brunes. On en a trouvé, mais pas assez. Les recherches se poursuivent. Les physiciens des particules se sont mis de la partie, en cherchant des particules inconnues. Bien que les théories dites supersymétriques qui tentent de concilier la gravitation et la mécanique quantique, prédisent l’existence de nouvelles particules, il n’est pas évident de chercher des particules dont on ignore tout. Pour l’instant, les recherches sont vaines. La nature de cette matière noire reste la grande énigme de la cosmologie.
Mais la matière noire devient de moins en moins noire. On arrive par des moyens détournés à en réaliser des images. Le gaz des amas est un outil privilégié d’analyse. Ce gaz est maintenu dans l’amas par l’attraction gravitationnelle exercée par la matière noire. Si l’on connaît la répartition de ce gaz, on peut en déduire la répartition de la matière en résolvant les équations de la dynamique. Cette méthode avait été mise au point depuis quelques années, mais on manquait d’une information essentielle : le profil de température du gaz en fonction de la distance à l’amas. Le gaz est en effet en équilibre entre sa pression interne, liée à sa température, et l’attraction gravitationnelle. Sans profil de température, on ne peut pas résoudre les équations de l’équilibre. C’est maintenant chose faite grâce à l’observatoire en rayon X européen XMM- Newton. Ce satellite, lancé à la fin de 1999, vient de permettre pour la première fois de déterminer de manière précise le profil de température du gaz dans un amas. Cela a permis d’en déduire le profil de densité de la matière noire. De là, on peut calculer quelques grandeurs typiques de cette matière noire comme sa température, sa pression interne, ou sa compressibilité. Heureusement pour les théoriciens, ces résultats ne sont en accord avec aucune des théories qui avaient été développées jusque-là. Il leur reste du travail pour encore quelques années. Plus directement, la matière noire fournit elle même les outils pour l’observer. Dans la gravitation générale d’Einstein, la lumière ne se propage pas en vrai ligne droite. Elle se propage le long de lignes qui sont déformées au passage d’une masse gravitationnelle. Cette prédiction a été vérifiée de manière éclatante au début du siècle en observant comment la position d’une étoile sur le ciel semblait changer, au fur et à mesure que les rayons lumineux entre elle et nous passaient près du soleil. De la même manière, si nous observons une galaxie située derrière un amas de galaxies, l’image de cette galaxie nous apparaîtra déformée à cause de son passage dans le champ gravitationnel de l’amas. La matière noire déforme les images de l’Univers lointain. Cet effet de lentille gravitationnelle est connu depuis longtemps. Mais ce n’est que depuis quelques années que nous disposons d’instrument d’imagerie suffisamment sensible et fiable pour pouvoir l’utiliser de manière systématique pour étudier la distribution de la matière noire dans les amas. L’image des galaxies déformées par un effet de lentille gravitationnelle se présente sous la forme d’un arc. Le premier arc gravitationnel a été trouvé grâce à des observations menées sur le télescope Canada-France-Hawaii en 1985. Depuis, en particulier grâce au télescope spatial
6
Hubble, on en a trouvé dans presque tous les amas observés. De la forme de l’arc, on peut en déduire la perturbation des rayons lumineux, et donc la distribution de la matière noire. La problématique de l’observation est renversée. D’habitude, on a une source, un télescope et on étudie l’image. Dans ce cas-là, on dispose d’une source, d’une image, et on calcule le télescope qui a produit cette image. Le télescope à matière noire est le plus gros instrument dont nous disposions ; chaque amas de galaxie représente un télescope de plusieurs centaines de millions d’années lumières de diamètre et de plusieurs dizaines de milliers de milliards de masses solaires de masse ! Heureusement que la nature nous l’offre. Le télescope à matière noire a déjà permis de faire des cartes de la matière noire dans les amas. Très récemment, encore, grâce à des observations effectuées avec le télescope Canada-France-Hawaii, il a été possible d’étendre cette méthode à des échelles dépassant la taille des amas classiques. Ce sera le domaine privilégié de recherches de MEGACAM, la prochaine grande caméra d’imagerie qui sera installée sur le télescope CFH à la fin 2001.
Insérer ici les trois figures

Un univers plat, des galaxies qui se forment par fusion hiérarchique, de la matière noire qui sert de télescope, les progrès accomplis ces dernières années ont profondément bouleversé notre connaissance de l’Univers et de ses constituants. En combinant les observations à toutes les longueurs d’onde, grâce aux observatoires spatiaux, nous avons pratiquement identifié toutes les sources qui sont à l’origine de la brillance du ciel. Le recensement de l’Univers est maintenant pratiquement achevé. C’est en soi un résultat spectaculaire. L’aboutissement de recherches commencées il y a plus de deux milles ans. Mais l’aventure continue. Il nous faut maintenant comprendre la physique de ces objets, leurs interactions et leur évolution. Il faut préciser le type d’univers dans lequel nous vivons. La génération actuelle des grands télescopes au sol, et la prochaine génération d’observatoires spatiaux permettra d’atteindre tout ou partie de ces objectifs. La grande inconnue reste la nature de la matière noire. Toutes les recherches ont été vaines. Dans quelles directions chercher maintenant ? Des pistes existent. Seront-elles fructueuses ? Bien malin qui peut le prédire. On ne peut qu’espérer que la solution sera trouvée un jour. Ce sera probablement par une découverte fortuite comme l’a été la découverte du rayonnement fossile.

 

  VIDEO       CANAL  U         LIEN
 

 
 
 
 

LE SUPERMONDE ET LES DIMENSIONS CACHÉES DE L'UNIVERS

 

 

 

 

 

 

 

LE SUPERMONDE ET LES DIMENSIONS CACHÉES DE L'UNIVERS

Texte de la 528 ème conférence donnée à lUniversité de tous les savoirs le 15 juin 2004
Le Supermonde et les Dimensions Cachées de lUnivers
par Pierre Fayet


Les symétries et leur rôle
Particules, Interactions et Symétries
Dans lexposé précédent, Gerard t Hooft nous a initié au monde microscopique des particules élémentaires et des interactions fondamentales. Celui-ci appartient aussi à lUnivers dans son ensemble, dont lobservation peut nous fournir certaines des clés nécessaires à notre compréhension.

On va discuter ici de particules, et dinteractions entre ces particules. Dans ce monde qui semble fort complexe, une notion vient mettre de lordre, celle de symétrie, absolument fondamentale. Les particules narrivent pas seules, mais sont rangées en des ensembles que lon appelle des multiplets. Elles existent en quelque sorte en plusieurs exemplaires aux propriétés semblables ou voisines, reliés par des symétries, faisant intervenir des transformations permettant de passer dun état dune particule à un autre état de particule. Par exemple dun état proton à un état neutron, ou dun neutrino à un électron. Ces symétries jouent un rôle déterminant dans le monde des particules et des interactions, en établissant des liens entre particules, des liens entre interactions, et même, comme nous allons le voir, en étant directement responsables de lexistence des diverses sortes dinteractions.

Nous allons parler des particules, et des constituants de la matière en premier lieu. De la matière ordinaire bien sûr, faite délectrons, et de protons et de neutrons, eux-mêmes constitués de quarks. Mais il existe aussi dautres sortes de particules, dautres formes de matière. Il y a déjà lantimatière, on le sait depuis longtemps. La théorie quantique des champs nous dit que les particules doivent être accompagnées dantiparticules de même masse, mais dont les autres caractéristiques comme la charge électrique sont opposées. Nous verrons aussi, avec la supersymétrie qui constituera lessentiel de notre sujet, que les particules peuvent avoir des sortes de doubles, reflets par supersymétrie des particules ordinaires, que lon appelle aussi des superpartenaires. Parmi eux, les neutralinos pourraient constituer la mystérieuse Matière Sombre qui semble le principal composant de la matière de notre Univers.
Nous allons aussi parler des interactions entre particules, responsables des forces qui sexercent entre elles, de leurs collisions (qui peuvent, ou non, en changer la nature), et le cas échéant de leurs processus de désintégration. Elles sont de quatre types : fortes, électromagnétiques, faibles et gravitationnelles. Ces dernières, bien que très importantes au niveau macroscopique, sont en fait extrêmement faibles, lorsque lon considère leur action entre particules prises individuellement. On sera souvent amenés à les ignorer ou à les négliger, au moins dans une première étape.

Les interactions électromagnétiques nous sont assez familières, et incluent notamment tous les phénomènes qui concernent la lumière, les ondes radio, les rayons X, etc. Les interactions fortes font que les quarks se regroupent, trois par trois, pour former les protons et les neutrons, ceux-ci sassociant ensuite en noyaux datomes. Les interactions
faibles sont elles aussi essentielles, en permettant notamment les réactions nucléaires de fusion qui alimentent le Soleil en énergie.
Nous avons appris que chacune de ces quatre sortes dinteractions fondamentales se trouve associée à lexistence de symétries particulières : symétries de jauge dans le cas des interactions fortes, électromagnétiques et faibles, ou symétries despace-temps, à la base de la relativité, pour ce qui est de la gravitation. Mais peut-être y a-t-il encore dautres sortes dinteractions, dont lexistence nous aurait échappé ? Et quen utilisant des généralisations successives de la notion de symétrie, on sera amenés à postuler lexistence de nouvelles particules, et de nouvelles formes dinteractions, qui nous seraient encore inconnues.
Pour aller plus loin : Supersymétrie, et dimensions supplémentaires
Ces interactions et ces symétries sont à loeuvre dans un univers. Notre expérience nous conduit à le représenter en trois dimensions, correspondant par exemple à la longueur, à la largeur et à la hauteur des objets qui sy trouvent. Mais on a quelques raisons de penser quil pourrait exister aussi des dimensions supplémentaires, qui nous seraient cachées. Comment celles-ci pourraient-elles se manifester, sont-elles grandes ou petites, et ny en aurait-il pas dencore plus bizarres, pour lesquelles la notion intuitive de distance perdrait sa signification ? Nous y reviendrons un peu plus loin.

Lessentiel de notre sujet va être la supersymétrie. Jai indiqué en sous-titre Une nouvelle symétrie de la physique des particules et des interactions fondamentales ?, avec un point dinterrogation pour rappeler que ce que lon va dire là-dessus demeure hypothétique. Ces théories ont été développées depuis un certain temps déjà, remontant aux années 1970. Elles peuvent dans lavenir se révéler justes, ou non. Il se peut que lon fasse fausse route, que lon soit sur une mauvaise piste. Mais cette piste des symétries sest montrée extrêmement fructueuse dans le passé et jusquà présent, et il est naturel de tenter de la poursuivre un peu plus loin, lavenir se chargeant de juger de la pertinence de cette démarche.
Nous verrons que lune des conséquences les plus remarquables de la supersymétrie, lorsque nous lappliquerons au monde des particules élémentaires, va être que celles-ci doivent avoir des sortes de doubles, ou superpartenaires. Si tel est le cas la moitié au moins du monde des particules aurait échappé à notre observation ! Lun des sujets essentiels de la physique des particules et interactions fondamentales aujourdhui, et aussi de la physique de lUnivers, consiste à tenter de mettre en évidence ces nouveaux objets, sils existent. Un indice peut-être ? La Matière Sombre souvent appelée aussi matière noire de lUnivers pourrait être constituée, pour lessentiel, de ces nouvelles particules dont lexistence est ainsi postulée par les théories de supersymétrie.
Symétries despace-temps, et symétries de jauge
Avant de rentrer véritablement dans le vif du sujet, nous allons revenir sur la notion de symétrie sur laquelle la physique des particules et interactions fondamentales sappuie depuis tr`es longtemps, et sur un certain nombre de ses généralisations successives. Le premier exemple de symétrie auquel on pense généralement est la symétrie par rapport à un miroir : on considère un objet et on le regarde dans le miroir. Lobjet et son image nous apparaissent alors comme ayant essentiellement les mêmes propriétés, obéissant lun et lautre aux mêmes lois physiques du moins tant que lon ne sintéresse pas aux interactions faibles, qui régissent notamment les désintégrations radioactives de certaines particules, ou de certains noyaux atomiques. Il sagit là dune symétrie, dite discrète, qui échange les rôles de la main gauche et de la main droite, et donc des deux orientations, gauche et droite, de l’espace.

On peut aussi considérer dautres symétries analogues, comme le renversement du sens du temps qui échangerait le passé et le futur. Et se demander si, ou plutôt dans quelle mesure, les lois physiques fondamentales sont bien invariantes par rapport à lopération qui consisterait à échanger les rôles du passé et le futur.
Dautres symétries despace-temps nous sont aussi familières, comme les translations et les rotations. On prend un objet, on peut le déplacer, et on sait que les lois physiques fondamentales sont (bien sûr dans un espace-temps qui serait par ailleurs vide) invariantes par translation, dans lespace comme dans le temps. En labsence dobjets extérieurs la physique ici est la même que la physique là ; et la physique dhier et celle daujourdhui, ou de demain, sont aussi les mêmes. Les lois physiques sont, de plus, invariantes par rotation : dans lespace (vide), il ny a pas de direction privilégiée. Toutes ces symétries sont des symétries despace-temps, et lon sera amenés à compléter cet ensemble en y rajoutant les transformations de Lorentz, qui sont à loeuvre en relativité et permettent dy relier lespace et le temps.

Il y a encore dautres symétries fondamentales, qui sont les symétries de jauge. On les rencontre déjà en électromagnétisme. Lorsque lon considère un champ magnétique , on peut lexprimer à laide dune certaine expression mathématique appelée potentiel vecteur ( ). Mais il y a plusieurs expressions possibles pour , en fait une infinité, qui toutes permettent de décrire le même champ magnétique. Laquelle choisir, et lune dentre elles devrait-elle être privilégiée ? Il nen est rien. Il y a là un principe dit dinvariance de jauge, selon lequel la physique ne dépend pas du choix particulier des expressions mathématiques utilisées pour la décrire.

Ce principe général est à loeuvre dans les symétries entre particules et entre interactions, notamment dans les théories dites de Yang et Mills, généralisations de lélectromagnétisme, qui vont permettre de décrire à la fois les interactions fortes, dune part, et les interactions électromagnétiques et faibles, dautre part.
Relativité, et gravitation
Mais revenons aux symétries despace-temps, en rappelant que, dans le cadre de la relativité, lespace et le temps jouent des rôles analogues. Le temps, qui peut être mesuré par des horloges en mouvement, les unes par rapport aux autres, perd alors son caractère absolu, universel, et devient relatif au référentiel choisi pour le mesurer.
Les transformations de Lorentz, qui permettent de transformer un objet au repos en un objet en mouvement (ou de passer dun référentiel considéré comme au repos à un autre en mouvement) sont alors capables de relier les coordonnées despace et de temps. Au lieu de considérer séparément lespace et le temps, on est conduit à les traiter comme formant une entité unique, et lon décrit les événements comme associés à des points (ou des quadrivecteurs) dans cet espace-temps à quatre dimensions, trois despace et une de temps.

La théorie de la relativité nous dit alors que les lois physiques fondamentales sont invariantes non seulement par rapport aux translations, dans lespace comme dans le temps, aux rotations dans lespace, mais aussi par rapport aux transformations de Lorentz qui apparaissent un peu comme des rotations généralisées de lespace-temps. Il sagit là de la théorie de la relativité dite restreinte.

Celle-ci a ensuite été généralisée par Einstein pour létendre dun espace-temps plat à un espace-temps courbe. Lorsque lon décrit la physique dans un tel espace-temps courbe, comme le fait la théorie de la relativité générale, la force de gravitation apparaît comme une force dinertie, que lon peut faire disparaître en chaque point par le choix dun référentiel approprié, en chute libre. Ceci nécessite au passage luniversalité de la chute libre, cest-à-dire que le mouvement de chute libre dun corps soit bien indépendant de sa composition (ce qui sexprime en un autre langage par lidentité de la masse inerte et de la masse gravitationnelle). Une particule soumise à une force de gravitation apparaît alors comme allant (localement) tout droit, mais dans un espace-temps qui, lui, est courbe. Et ce qui courbe lespace-temps, ce sont les masses, ou plus précisément les densités dénergie, et même dénergie-impulsion, comme lexpriment les équations dEinstein de la relativité générale.

Superespace, et dimensions supplémentaires

 

        VIDEO     canal U       LIEN

 
 
 
 

LE SOLEIL

 

 

 

 

 

 

 

LE  SOLEIL


PLAN
            *         SOLEIL
            *         ASTRONOMIE
            *         Introduction
            *         Historique des principales découvertes sur le Soleil
            *         Le Soleil, une étoile naine
            *         La structure du Soleil
            *         Le cœur du Soleil
            *         La zone radiative du Soleil
            *         La zone convective du Soleil
            *         La photosphère
            *         La chromosphère
            *         La couronne
            *         Le vent solaire
            *         Les anneaux de poussières
            *         L'activité solaire
            *         Taches solaires et facules
            *         Éruption solaire
            *         Boucles
            *         Protubérances
            *         Trous coronaux
            *         Les cycles d'activité solaire
            *         Les relations Soleil-Terre
            *         L'évolution du Soleil
            *         RELIGION


Soleil

(latin populaire soliculus, du latin classique sol, solis)

Étoile autour de laquelle gravite la Terre.


ASTRONOMIE
Introduction

Le Soleil est l'une des quelque 100 milliards d'étoiles de la Galaxie. Il présente la double caractéristique d'être une étoile extrêmement proche (Proxima du Centaure, l'étoile la plus proche du Système solaire, est 270 000 fois plus lointaine) et du type le plus courant. Son étude constitue de ce fait un moyen d'information permettant d'accéder aux processus fondamentaux d'évolution des étoiles et de vérifier certaines hypothèses et méthodologies utilisées en astrophysique stellaire. L'essentiel de ce que l'on sait du Soleil vient de l'étude de son rayonnement ; toutefois, depuis les années 1970, l'héliosismologie (ou sismologie solaire), qui étudie les modes d'oscillation du Soleil, favorise la connaissance de sa structure interne. Par ailleurs, les observations spatiales viennent désormais utilement compléter celles faites au sol, en autorisant l'étude du Soleil dans des domaines du spectre correspondant à des rayonnements arrêtés par l'atmosphère terrestre : rayonnements γ, X et ultraviolet.

Historique des principales découvertes sur le Soleil
Lorsqu'il découvre, en 1611, la rotation du Soleil en se fondant sur le mouvement des taches solaires, Galilée inaugure les études modernes du Soleil. La première estimation correcte de la taille de celui-ci et de sa distance par rapport à la Terre fut effectuée en France, par l'Académie des sciences, en 1684, grâce aux données obtenues par triangulation à partir de la mesure de la distance de Mars. En effet, cette mesure, faite en 1672 lorsque la planète s'approcha au maximum de la Terre, permit de connaître par une simple application de la troisième loi de Kepler la distance Terre Soleil. La découverte des raies sombres du spectre solaire par Joseph von Fraunhofer, en 1814, et son interprétation physique par Gustav Robert Kirchhoff, en 1859, inaugurèrent l'ère de l'astrophysique solaire, au cours de laquelle l'étude effective de l'état physique et de la composition chimique de la matière solaire devint possible.

Le champ magnétique intense des taches solaires fut découvert par George Ellery Hale en 1908. Le rôle des réactions nucléaires dans la production de l'énergie solaire fut démontré par Jean Perrin en 1919 et ces réactions furent explicitées par Hans Bethe en 1939. Les connaissances sur le Soleil évoluent et ne restent pas figées : le vent solaire ne fut découvert qu'en 1962, et ce n'est que sept ans plus tard que sa source fut identifiée avec les trous coronaux.

Le Soleil, une étoile naine
Le Soleil, comparé aux plus grandes étoiles connues, dont les diamètres sont 1 000 fois supérieurs au sien et dont les masses peuvent atteindre près d'une centaine de fois sa masse, est une étoile tout à fait moyenne, mais c'est un astre de taille respectable par rapport aux minuscules étoiles rouges. Il est donc répertorié dans la classe des étoiles naines. Son spectre, sa température de surface et sa couleur amènent à le classer plus précisément comme une naine G2 V, suivant la classification en usage (G désignant le type spectral, et V la classe de luminosité). La décomposition spectrale de son rayonnement a son maximum à environ 500 nm de longueur d'onde, ce qui lui vaut sa couleur jaune caractéristique.
La structure du Soleil

De son cœur jusqu'à sa couronne et à son vent solaire – qui s'étend jusqu'à la Terre et au-delà – le Soleil comporte plusieurs zones ayant chacune des caractéristiques physiques.

Le cœur du Soleil
Le poids des couches extérieures du Soleil comprime le gaz de la région centrale, le cœur, pour lui donner une densité qui est environ 160 fois celle de l'eau. La température atteinte est d'environ 15 millions de degrés. Partout à l'intérieur du Soleil, des atomes entrent constamment en collision avec assez d'énergie pour ioniser le gaz, qu'on appelle alors un plasma.

La zone radiative du Soleil
Dans le premier tiers du Soleil, les collisions entre particules sont si violentes qu'elles provoquent des réactions nucléaires, qui libèrent une énergie colossale et donnent au Soleil son éclat habituel. Cette série de réactions provoque la fusion thermonucléaire de l'hydrogène et sa transformation en hélium, suivant plusieurs séquences, dont la principale, qui fournit plus de 90 % de l'énergie totale, est appelée « chaîne proton proton », car elle met en œuvre quatre noyaux d'hydrogène, ou protons (le noyau d'hydrogène étant composé d'un seul proton), pour former un noyau d'hélium. Cette réaction proton proton peut alimenter le Soleil en énergie pendant environ 10 milliards d'années (l'âge du Soleil étant estimé à environ 5 milliards d'années, il lui reste donc encore un temps équivalent à vivre). Les rayons gamma émis par les réactions nucléaires voyagent vers l'extérieur et sont sans cesse absorbés et réémis : c'est la zone radiative. Un photon parcourt en moyenne 1 cm avant d'être capturé ; les absorptions et émissions successives diminuent l'énergie des photons, qui passent à l'état de rayons X, puis ultraviolets, avant de devenir visibles au niveau de la photosphère.

La zone convective du Soleil
Vers 0,8 rayon solaire, comme le poids des couches de gaz extérieures diminue, la densité et la température requises pour maintenir cette couche en équilibre hydrostatique diminuent également rapidement. À une distance du centre du Soleil égale à 0,6 rayon solaire, la température est d'environ 1 million de degrés ; aussi, l'hydrogène et l'hélium ne sont plus complètement ionisés, et les atomes neutres absorbent donc les radiations qui proviennent des zones incandescentes du cœur. Dans cette région, le chauffage et l'expansion des gaz qui s'ensuit permet à ces derniers de se déplacer vers le haut à cause de leur densité plus faible, et la chaleur atteint les couches supérieures. Ainsi, le transport de l'énergie s'effectue par un vaste brassage de matière qui monte, se refroidit, puis redescend : c'est la convection, qui constitue un moyen puissant pour évacuer la chaleur vers l'extérieur.

Le plasma solaire de la zone de convection est à peu près aussi bon conducteur qu'un fil de cuivre à température ambiante. Aussi, lorsqu'un volume important d'une matière de ce type traverse un champ magnétique, comme ici dans le Soleil, il induit un courant électrique considérable, qui déforme le champ primitif au point de l'entraîner dans son mouvement. L'influence mutuelle des champs magnétiques et des plasmas en mouvement est connue sous le terme de magnétohydrodynamique (MHD). La MHD permet d'étudier comment la rotation différentielle modifie les lignes de champ magnétique polaires, les déforme et les amène parallèlement à l'équateur au cours du cycle d'activité du Soleil.
La convection continue à être efficace jusqu'à ce que soient atteintes les couches où la densité est si faible que l'énergie rayonnée par les gaz ascendants peut s'échapper directement dans l'espace. Cette couche est la surface visible du Soleil, la photosphère.

La photosphère

L'observation de la photosphère montre un grand nombre de cellules convectives, les granules, dont la taille est d'environ 1 millier de kilomètres. Ces granules « vivent » environ un quart d'heure ; elles sont formées par des gaz ascendants chauds, entourés par des gaz descendants plus froids, se déplaçant à environ 1 km/s.
Il semble que les mouvements convectifs des gaz solaires, en plus du transport de chaleur, aient des effets importants sur la rotation du Soleil, sur son magnétisme et sur la structure des couches situées au-dessus de la photosphère. La convection contribuerait à expliquer le fait que les gaz de la photosphère ne tournent pas de façon rigide : si la période de rotation est d'environ 25 jours à l'équateur, elle s'élève déjà à 1 mois à la latitude de 60°.
Aux abords de la photosphère, la densité du gaz diminue rapidement en altitude, d'un facteur 10 tous les 1 000 km environ. Cette diminution rapide explique le bord net du Soleil, même quand on le voit dans des télescopes, car la couche dans laquelle le gaz perd son opacité et devient transparent n'a que quelques centaines de kilomètres d'épaisseur (ce qui représente moins d'une seconde d'arc quand on l'observe depuis la Terre). Ainsi, la photosphère n'est pas une surface, mais une couche solaire d'environ 300 km d'épaisseur.


La chromosphère
Au-dessus de la photosphère, la température descend jusqu'à un minimum d'environ 4 500 K ; puis, assez curieusement, elle commence à remonter. Pendant quelques secondes, au début et à la fin d'une éclipse totale de Soleil, on peut observer un mince anneau de quelques milliers de kilomètres d'épaisseur autour du disque solaire ; cet anneau brille d'un éclat rosé intense, d'où son nom de chromosphère, c'est-à-dire « sphère de couleur ». Lorsqu'on l'examine au télescope avec un spectrographe à haute résolution, on peut voir que la plupart des émissions chromosphériques proviennent de jets très fins de gaz dirigés vers l'extérieur, les spicules, d'une température d'environ 15 000 K et d'une densité d'environ 1011 particules par centimètre cube. Un spicule a une durée de vie de 5 à 10 minutes ; sa hauteur est en général de 5 000 à 10 000 km, et son épaisseur environ dix fois plus faible. Les gaz se déplacent vers l'extérieur à des vitesses d'environ 25 km/s. Les spicules semblent se situer à la périphérie des cellules de supergranulation, semblables aux granules, mais qui s'étendent sur des diamètres de l'ordre de 30 000 km.
La couronne

Au cours d'une éclipse totale, ou à l'aide d'un coronographe, on peut observer l'atmosphère du Soleil, qui s'étend à une distance de plusieurs rayons solaires au-delà de la photosphère et émet une faible lueur, la couronne solaire, 1 million de fois moins brillante que le disque, dans sa partie la plus lumineuse. Cependant, malgré les températures observées dans la chromosphère, la densité de matière décroît si rapidement qu'aucune couronne ne devrait être visible même à proximité de la surface. L'explication de ce phénomène a été trouvée en 1940 lorsqu'on a pu prouver que dans le spectre du rayonnement de la couronne certaines raies non identifiées étaient causées par des corps fortement ionisés, comme le fer ionisé 13 fois, ce qui implique une température de l'ordre du million de degrés. Comme un gaz chaud a moins tendance à être comprimé par les couches supérieures qu'un gaz froid, la température élevée qui règne dans la couronne permet d'expliquer pourquoi cette dernière est si étendue.

Le mécanisme qui porte la couronne à une température aussi élevée est mal connu, et cette question est au centre de nombreuses recherches, notamment à partir de satellites artificiels. Ainsi, le gaz coronal à proximité du Soleil est visible à l'œil nu pendant les éclipses, car il diffuse la lumière photosphérique à partir des électrons du plasma de la couronne. En effet, ce plasma très chaud émet ses propres rayonnements, ultraviolet et X, lorsque des électrons, se déplaçant rapidement, entrent en collision avec des ions d'éléments plus lourds. Le chauffage de la couronne n'est donc pas une simple question de flux de chaleur en provenance de la photosphère plus froide, par conduction, convection ou radiation, car un tel flux irait à l'encontre de la seconde loi de la thermodynamique. Plus vraisemblablement, ce sont des ondes acoustiques ou d'autres formes d'ondes générées par les mouvements gazeux de la photosphère qui transportent l'énergie dans le milieu coronal et la dissipent en la transformant en chaleur, pour équilibrer les pertes subies par la couronne. Une autre explication peut être la dissipation de courants électriques dans le plasma coronal, très conducteur, de la même façon que l'effet Joule élève la température dans un matériau résistant.

Le vent solaire

La température et la pression des gaz de la couronne sont trop élevées pour que leur effet soit compensé par la gravité solaire. Des particules peuvent ainsi s'échapper dans l'espace, et participer à la formation du vent solaire. Celui-ci est constitué d'électrons (90 %), de neutrons, de quelques noyaux d'hélium et de traces d'éléments plus lourds. En 1983, quand la sonde américaine Pioneer 10 quittait le Système solaire connu, elle détectait encore la présence du vent solaire. Au niveau de l'orbite de la Terre, la vitesse d'expansion du vent solaire est de 300 à 700 km/s, avec une densité de 1 à 10 particules par centimètre cube ; ainsi, la perte de masse du Soleil, due au vent solaire, n'est que de 10−13 masses solaires par an. Néanmoins, le vent solaire a des effets observables sur les couches supérieures de l'atmosphère terrestre, notamment lors des aurores polaires.

Les anneaux de poussières
Le Soleil est entouré d'anneaux, ou de disques, de poussières interplanétaires. L'un de ces anneaux, situé dans le plan de l'orbite de Jupiter, est connu depuis longtemps : il est à l'origine de la « lumière zodiacale ».
En 1983, un autre anneau fut découvert dans la ceinture d'astéroïdes, entre Mars et Jupiter, par IRAS (Infrared Astronomy Satellite, ou satellite artificiel d'observation astronomique dans l'infrarouge). Une équipe d'astronomes japonais et indonésiens découvrit, également en 1983, un troisième anneau à seulement deux diamètres solaires de notre astre.

L'activité solaire
Le Soleil entretient un champ magnétique intense qui influence les structures physiques de la photosphère, de la chromosphère et de la couronne de manière complexe et variable selon les époques : c'est ce qu'on appelle l'activité solaire.

Taches solaires et facules
Les champs magnétiques émergent dans les couches visibles sous l'aspect de boucles toroïdales de flux magnétique. Leur effet le plus évident sur la photosphère est la formation des taches solaires sombres et des facules brillantes, qui caractérisent à ce niveau une région active. Lorsqu'ils sont intenses, ils perturbent la convection, et amoindrissent donc l'efficacité du processus dominant de transport de chaleur jusqu'à la photosphère, d'où la température « basse » et la relative obscurité des taches solaires.
Une région active se développe horizontalement lorsque le « tube magnétique » émerge de la photosphère, en forme de boucle, passant d'une taille de moins de 5 000 km jusqu'à plus de 100 000 km en une dizaine de jours. C'est au cours de cette période de croissance rapide que la probabilité pour que se produise une éruption solaire spectaculaire est la plus forte.

Éruption solaire
Une forte éruption est caractérisée par un rapide accroissement de la brillance, d'un facteur 5 à 10, en quelques minutes, sur une surface considérable de la région active, comme on peut l'observer dans la raie Hα de l'hydrogène émise par la chromosphère. Seules les éruptions très importantes peuvent être décelées en lumière blanche, à cause de la brillance de la photosphère. Les effets les plus violents et les plus spectaculaires de l'éruption ont lieu cependant dans la couronne. Là, les boucles magnétiques qui surmontent les taches et les facules peuvent accroître leur brillance dans les rayonnements X et ultraviolet d'un facteur 100 ou plus. Les particules chargées sont accélérées jusqu'aux vitesses relativistes, et une puissante émission sur des longueurs d'ondes centimétriques est généralement constatée.
Certaines éruptions produisent aussi de fortes explosions radio sur des longueurs d'ondes métriques, et d'importants volumes de plasma sont souvent projetés dans l'espace à des vitesses qui dépassent la vitesse d'échappement – qui est de l'ordre de 600 km/s – udu champ de gravité solaire au niveau de la photosphère. L'événement cataclysmique s'affaiblit lentement, en quelques heures, après avoir libéré une énergie allant jusqu'à 10215 J. Ce mécanisme a été récemment interprété comme un « court-circuit » géant entre des tubes de force du champ magnétique. Les taches solaires durent en général quelques semaines, les grandes, plus durables, pouvant survivre 2 ou 3 mois. Les facules continuent à signaler une région active pendant un peu plus longtemps. Finalement, il semble que les mouvements de convection désordonnés près de la photosphère démantèlent la boucle de flux magnétique et la dispersent en plus petits éléments sur toute la surface de cette dernière.
Loin des régions actives, des champs d'intensités comparables (de 0,1 à 0,2 tesla) sont mesurés, mais ils se restreignent à un réseau polygonal qui coïncide avec les bords des cellules de supergranulation dont il a été fait mention précédemment.

Boucles
Au-dessus de la photosphère, les champs magnétiques d'une région active peuvent être détectés par leur effet sur la répartition des températures et des densités dans la chromosphère et dans la couronne. Là encore, des structures proéminentes en forme de boucles, observées dans les rayonnements X et ultraviolets, montrent comment les lignes de champ s'étendent jusqu'à 100 000 km et davantage au-dessus d'une tache, et reviennent ensuite vers la photosphère, généralement dans le même centre d'activité.
Protubérances

Dans d'autres régions de la couronne, d'immenses feuillets de plasma condensé relativement froid (10 000 K, contre 1 à 3 millions dans la couronne), appelés protubérances, sont soutenus par les tubes de champ magnétique jusqu'à des hauteurs qui peuvent dépasser 200 000 km.

Trous coronaux
Dans certaines grandes zones, appelées trous coronaux, l'émission de la couronne est nettement plus faible, ce qui montre une baisse de la densité du plasma, dont la température est de 1 million de degrés au moins. Les observations radioastronomiques indiquent que dans ces régions les lignes de champ magnétiques s'étendent radialement vers l'extérieur et ne forment plus des structures closes, comme dans les boucles et les protubérances. Une partie de la couronne peut alors s'écouler dans l'espace interplanétaire, c'est le vent solaire. Ces trous sont plus fréquents aux pôles solaires, où les lignes magnétiques sont plus facilement ouvertes, mais peuvent descendre parfois jusqu'à l'équateur.

Les cycles d'activité solaire
L'activité solaire présente un cycle d'une période d'environ 22 ans. La propriété la plus facilement observable de ce cycle est la variation, tous les onze ans environ, du nombre de taches solaires. Le cycle de 22 ans semble avoir été assez régulier au cours du xixe s. et même au-delà, mais les témoignages historiques indiquent qu'entre 1640 et 1710 – ce qu'on appelle le minimum de Maunder – aundern appelle le minimum de Maundergnages
Les irrégularités, à long terme, de l'activité solaire peuvent avoir des retombées tangibles sur la Terre, car les flux de particules solaires chargées et le rayonnement ultraviolet sont directement liés au niveau d'activité manifesté par les régions actives, les éruptions et les trous coronaux. Des variations dans ces émissions peuvent affecter, on le sait, les couches supérieures de l'atmosphère et avoir des répercussions importantes sur le climat.

Les relations Soleil-Terre
Le Soleil émet en permanence dans l'espace un flux de particules chargées, le vent solaire. Celui-ci a pour effet de déformer la magnétosphère terrestre, qui est comprimée du côté du Soleil et étirée dans la direction opposée. Mais ce régime peut être brutalement perturbé en période d'activité solaire, quand le Soleil émet des bouffées de plasma plus énergétique : l'arrivée massive de ces particules dans l'environnement terrestre provoque alors la formation d'aurores polaires et d'orages magnétiques.
Par ailleurs, on sait que la Terre est soumise à des variations d'ensoleillement liées à sa rotation sur elle-même (alternance des jours et des nuits) et à sa translation autour du Soleil (cycle des saisons). Sur des intervalles de temps plus longs, on a pu établir que les variations de l'excentricité de son orbite et de l'inclinaison de son axe de rotation avaient également des répercussions climatiques (théorie de Milanković). Il est légitime de se demander si le Soleil lui-même et son rayonnement n'ont pas des fluctuations suffisantes pour avoir un impact sur le climat de la Terre. Les observations spatiales ont mis en évidence de légères fluctuations (0,2 %) de la constante solaire, c'est-à-dire du flux d'énergie solaire reçu au sommet de l'atmosphère, perpendiculairement par unité de temps et de surface, en fonction du cycle de l'activité solaire. Mais on n'a pu encore clairement établir de lien entre ces variations et celles de la température sur la Terre.

L'évolution du Soleil
Depuis 4,6 milliards d'années, le Soleil est alimenté en énergie par la fusion d'hydrogène en hélium. Dans 3,5 milliards d'années, il aura brûlé la quasi-totalité de l'hydrogène de son noyau. La production d'énergie nucléaire cessant, la matière se contractera, ce qui provoquera une augmentation interne de la température et de la pression. Les couches extérieures se dilateront et la température de la photosphère baissera : le Soleil deviendra une géante rouge. Son rayon pourra alors atteindre la moitié de la distance de la Terre au Soleil mais notre planète se sera alors éloignée à 250 millions de km de son étoile. En effet, le Soleil ayant perdu près de 40% de sa masse par suite de l'échappement du vent solaire, la Terre sera alors soumise à une plus faible attraction. Cet éloignement relatif ne compensera pas l'énorme accroissement de luminosité du Soleil. Dans le cœur de l'étoile, lorsque la température atteindra 100 millions de degrés, la fusion de l'hélium, produisant du carbone et de l'oxygène, se déclenchera et se propagera vers l'extérieur.
Quelques milliards d'années plus tard, l'hélium sera épuisé à son tour et, la production d'énergie nucléaire cessant, le Soleil se contractera à nouveau. Les réactions nucléaires reprendront alors dans deux zones : en surface, transformation de l'hydrogène en hélium, et à l'intérieur, de l'hélium en carbone et oxygène. Sous la pression intense du rayonnement, de la matière sera éjectée. Le rayon du Soleil se réduira à une dizaine de milliers de kilomètres. Dans le même temps, sa température de surface passera à une centaine de milliers de kelvins. Le Soleil finira ainsi son existence sous les traits d'une naine blanche dont le rayonnement faiblira peu à peu. Quant à la matière éjectée, elle se dispersera dans le milieu interstellaire où elle donnera naissance, ultérieurement, à de nouvelles étoiles.

RELIGION
Le culte du Soleil, assez répandu dans diverses sociétés anciennes, a eu un succès tout particulier en Égypte pharaonique, en tant que puissance fécondante. Rê représentait l'astre solaire, et Aton le disque solaire. Dans la ville sainte d'Héliopolis s'étaient élaborés mythes et systèmes théologiques et, dès la IVe dynastie, certains pharaons se sont qualifiés de fils de Rê. Aménophis IV organisa un nouveau culte solaire avec le syncrétisme Amon-Rê.


 DOCUMENT   larousse.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ] - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon