|
|
|
|
|
|
Le Soleil |
|
|
|
|
|
Le Soleil
Publié le 7 juin 2017
Le Soleil est l’une des cent milliards d’étoiles de notre galaxie. C’est l’étoile la plus proche de la Terre – située à quelque cent cinquante millions de kilomètres – et donc la mieux observée. Mais comment l’observe-t-on et de quoi est-elle constituée ?
NATURE ET SOURCE D’ÉNERGIE DU SOLEIL
Le Soleil est une grosse boule de gaz chaud tournant sur elle-même en 28 jours environ. Comme toutes les étoiles, le Soleil brille car il produit de l’énergie. C’est un gigantesque réacteur nucléaire. En son cœur, la température est de 15 millions de degrés. A cette température ont lieu des réactions de fusion au cours desquelles, l’hydrogène est transformé en hélium en libérant de l’énergie. Cette transformation se fait progressivement et lorsque le Soleil aura épuisé tout son hydrogène, la température en son centre augmentera encore jusqu’à déclencher la fusion de l’hélium en carbone. Mais la capacité de fusion nucléaire dont dispose le Soleil est limitée et n'excèdera pas dix milliards d’années environ au total.
AGE ET COMPOSITION DU SOLEIL
On suppose que le Soleil et tous les corps du système solaire sont nés quasiment en même temps. Or l’âge des plus vieilles roches terrestres, lunaires et météoriques a pu être estimé aux alentours de 4,6 milliards d’années. C’est donc aussi l’âge du Soleil qui est ainsi à la moitié de sa vie.
Les proportions relatives des divers éléments chimiques du Soleil et du système solaire sont connues grâce à deux sources principales :
* L’analyse de la lumière émise par la surface du Soleil, la photosphère. Cette lumière est la lumière visible, mais aussi les rayonnements non visibles à l’œil nu (les ondes radio, l’infrarouge, l’ultraviolet, les rayons X et gamma). Tous ces rayonnements forment le spectre du Soleil. Dans le spectre solaire, la trace des différents éléments chimiques est visible sous forme de bandes sombres, les raies d’absorption, qui permettent d’identifier chaque élément.
*
* L’analyse en laboratoire des météorites tombées sur Terre permet aussi de déterminer la composition chimique de la matière qui constitue le système solaire.
STRUCTURE DU SOLEIL
La surface du Soleil présente des taches sombres et des éruptions qui sont le signe d’une activité interne, turbulente et chaotique. On estime que les couches les plus externes du Soleil, soit les derniers 30% de son rayon, sont animées en permanence de mouvements convectifs qui transportent la matière vers la surface. On ne peut pas observer directement l’intérieur du Soleil. Pour comprendre la dynamique turbulente et l’activité magnétique du Soleil il est nécessaire de disposer d’un « modèle physique » complet, représentant sa composition interne, sa dynamique et son atmosphère.
HÉLIOSISMOLOGIE ET MODÉLISATION 3D : DES TECHNIQUES
POUR SONDER LE SOLEIL
Notre compréhension du Soleil a connu des progrès considérables au cours des trente dernières années. Il est à présent possible de sonder l’intérieur de l’astre grâce à l’héliosismologie, l’étude des vibrations solaires. Les mouvements internes du Soleil font « vibrer » le Soleil comme un tambour et créent des ondes acoustiques qui se propagent jusqu’à différentes profondeurs dans le Soleil. L’étude de ces ondes a permis de valider et d’améliorer les modèles de l’intérieur solaire en déterminant notamment la densité et la vitesse de rotation interne de l’étoile.
Le progrès des supercalculateurs a également permis le développement de codes de calculs les plus réalistes possibles, aptes à décrire la magnétohydrodynamique, c’est à dire les mouvements de la matière dans un champ magnétique à l’intérieur des étoiles, dont le Soleil. Ces simulations numériques sur ordinateurs permettent de reproduire actuellement l’amplitude des ondes qui parcourent le Soleil du cœur jusqu’à sa surface mais également de comprendre certains phénomènes, tels que la turbulence, la convection, les effets thermiques, radiatifs et visqueux ou encore la rotation différentielle (entre les pôles et l'équateur). Récemment, les chercheurs sont ainsi parvenus pour la première fois à réaliser une modélisation 3D de 97 % du volume du Soleil.
Pour mieux comprendre l’activité magnétique cyclique du Soleil (dont la période est d’environ 11 ans) et tenter de se protéger de ses effets sur la Terre, les astrophysiciens font aussi appel à la simulation par ordinateur. Ces simulations permettent de mieux comprendre le déclenchement des éruptions solaires qui affectent tout le système solaire. Celles-ci sont la source du vent solaire, un flot de particules qui s’échappe du Soleil et vient balayer la Terre, créant d’importantes perturbations électromagnétiques affectant les réseaux électriques, les communications et les satellites d’observation.
DOCUMENT cea LIEN |
|
|
|
|
|
|
Les particules élémentaires de la matière |
|
|
|
|
|
Les particules élémentaires de la matière
Publié le 4 mars 2016
Dernière mise à jour : 11 août 2022
Les objets, la lumière, l’électricité… La matière qui nous entoure est un assemblage de particules élémentaires reliées entre elles par des interactions. C’est ce que décrit la théorie du modèle standard de la physique des particules. Cette théorie explique l’origine, la composition et les propriétés intimes de la matière et des forces à l’aide de « grains » élémentaires. Certaines de ces particules ont été observées et étudiées depuis longtemps. D’autres sont plus récentes comme le boson de Higgs. Certaines n’ont cependant toujours pas pu être débusquées par les plus puissants détecteurs du monde.
LES PARTICULES, INGRÉDIENTS DE LA MATIÈRE
La matière qui nous entoure est composée de particules élémentaires, plus petites que les atomes. Ces « briques » microscopiques sont définies par plusieurs propriétés :
* une masse : une particule est plus ou moins « massive ». À cette échelle infiniment petite, la masse s’exprime en énergie (électronvolt) ;
* une charge électrique : une particule peut posséder des propriétés électriques ou non ;
* un spin : responsable d’une partie des propriétés magnétiques, à l’échelle subatomique ;
* une « charge de couleur » : rouge, verte ou bleue (attention : à l’échelle des particules, la notion de « couleur » n’est pas la même qu’à l’échelle humaine ; il s’agit d’un code auquel on peut attribuer 3 possibilités, représentées par trois couleurs).
Selon leurs propriétés et leur environnement, les particules peuvent s’attirer, rester ensemble, s’éviter, ne pas interagir du tout…
Propriétés de quelques particules
* Quark up
Masse : 1,5->4 MeV/c2 ; Charge : +2/3 ; Spin : 1/2 ; Couleur : 1 couleur (rouge, vert ou bleu)
* Quark down
Masse : 4->8 MeV/c2 ; Charge : -1/3 ; Spin : 1/2 ; Couleur : 1 couleur (rouge, vert ou bleu)
* Electron
* Masse : ≈ 0,5 MeV/c2 ; Charge : -1 ; Spin : 1/2 ; Couleur : pas de couleur
* Neutrino Ve
* Masse : < 2,5 eV/c2 ; Charge : 0 ; Spin : 1/2 ; Couleur : pas de couleur
* Positon
* Masse : ≈ 0,5 MeV/c2 ; Charge : +1 ; Spin : 1/2 ; Couleur : pas de couleur
* Photon
* Masse : 0 eV/c2; Charge : ≈ 0 ; Spin : 1 ; Couleur : pas de couleur
* Gluon
* Masse : 0 eV/c2; Charge : 0 ; Spin : 1 ; Couleur : 1 couleur + 1 "anti-couleur"
* Boson de Higgs
Masse : ≈ 125 GeV/c2 ; Charge : ≈ 0 ; Spin : 0 ; Couleur : pas de couleur
La théorie du modèle standard
Elaboré dans les années 1960-70, le modèle standard est une théorie très puissante qui décrit la structure de la matière à des échelles ultimes (inférieures à 10-15 mètres). C’est la meilleure description connue de l’ensemble des constituants élémentaires de la matière et des interactions fondamentales (forte, faible, et électromagnétique) qui s’exercent entre eux. La cohérence de ce modèle repose sur l’existence d’une particule très spéciale, le boson de Higgs, qui expliquerait l’origine de la masse des particules constituant la matière.
DEUX GRANDES FAMILLES : LES « GRAINS » DE MATIÈRE ET LES CHAMPS DE FORCE
De façon générale, il existe deux grandes familles de particules-clés : les fermions et les bosons. Les premiers constituent les briques de matière tandis que les seconds sont des champs de force qui permettent à ces briques d’interagir et de s’assembler.
NB : Les « antiparticules » sont des particules (fermions ou bosons) de charge électrique et de couleur opposées à celles des particules « standard ».
DES PARTICULES ÉLÉMENTAIRES AUX ATOMES : COMPRENDRE L’INFINIMENT PETIT
Les atomes, encore parfois présentés à tort comme plus petites unités de matière, sont constitués de fermions, « particules de matière », maintenus ensemble par des bosons, « particules de force ».
* Le noyau d’un atome est composé de protons et de neutrons. Ces éléments sont des assemblages de quarks (hadrons baryoniques) de la famille des fermions.
* Ils sont maintenus ensemble grâce à des échanges continus de gluons, qui appartiennent à la famille des bosons.
* Des électrons circulent autour du noyau : ces leptons sont liés au noyau par des photons (interaction électromagnétique).
Grâce aux gluons, les quarks peuvent s’assembler et former des particules composites. On ne parle plus de particules élémentaires, mais de hadrons (assemblages de quarks).
LES OUTILS DE RECHERCHE
Beaucoup de particules élémentaires ne sont pas stables. Elles se désintègrent rapidement en d'autres particules, ce qui rend leur étude difficile. Sonder la matière à l’échelle subatomique nécessite des outils de pointe :
* Les accélérateurs de particules permettent de provoquer des collisions de particules à des vitesses proches de celle de la lumière, pour en créer de nouvelles et étudier leurs propriétés. Il est possible de recréer des conditions (d'énergie, de température…) proches de celles qui existaient au début de l'Univers. Ces accélérateurs produisent ainsi des particules fugaces qui existaient dans les premiers instants de l’Univers. Ces particules sont observées grâce à des détecteurs géants. Le LHC (Large Hadron Collider), plus grand accélérateur de particules du monde, est installé dans un tunnel en forme d’anneau de 27 km de circonférence, creusé à 100 mètres sous terre entre la France et la Suisse.
Les observatoires spatiaux : l’étude de l’Univers est intimement liée à la physique des particules. Elles tendent toutes les deux à comprendre l’origine de l’Univers, son évolution et sa composition. Par exemple, Le télescope HESS II étudie des rayons cosmiques appelés « sursauts gamma », qui sont constitués de jets de photons très énergétiques. Les rayonnements cosmiques peuvent être également composés de protons, noyaux d’hélium ou encore d’électrons.
Notions clés
* La matière est composée de particules élémentaires qui interagissent entre elles.
* L’existence, les propriétés et interactions de ces particules sont prédites par la théorie du modèle standard.
* Pour confirmer cette théorie, les chercheurs emploient des accélérateurs de particules pour découvrir et caractériser les particules. Ces expériences se complètent par les recherches en astrophysique.
DOCUMENT cea LIEN
|
|
|
|
|
|
|
Les supernovas |
|
|
|
|
|
Les supernovas
Spectaculaires mais rares, les supernovas sont des explosions cataclysmiques des étoiles les plus massives.
Publié le 10 décembre 2015
Pour que les nouveaux éléments synthétisés au cœur de l'étoile enrichissent l'Univers, encore faut-il qu'ils se répandent dans le milieu interstellaire.
DES ÉTOILES…
Les étoiles dont la masse est à peu près dix fois supérieure à celle du Soleil entretiennent tout d’abord la fusion de l’hydrogène en hélium pendant quelques millions d’années. À la fin de cette période, l’épuisement de l’hydrogène conduit à la contraction gravitationnelle du cœur jusqu’à ce que la température soit suffisamment élevée pour amorcer la fusion de l’hélium en carbone et en oxygène, pendant que l’hydrogène continue sa fusion dans une couche entourant le cœur. Après environ un million d’années, l’hélium s’épuise à son tour et la contraction du cœur permet la fusion du carbone en néon et en sodium, pendant dix mille ans. Suivent ensuite la fusion du néon en oxygène et en magnésium (qui dure une dizaine d’années), puis celle de l’oxygène en silicium et en soufre (pendant quelques années). Finalement, une semaine suffit à transformer le silicium en fer. L’apparition de ce dernier marque le début d’un processus qui aboutira à la destruction de l’étoile.
Le noyau du fer étant le plus lié (son énergie de liaison étant la plus forte), sa combustion ne permet pas de produire l’énergie que l’étoile rayonne inexorablement par sa surface.
Une fois le silicium épuisé et le fer formé, la contraction du cœur reprend, mais, cette fois, la température est si forte que les photons peuvent briser les noyaux de fer. La disparition d’une partie de l’énergie lumineuse diminue la pression centrale et précipite l’effondrement du cœur, attisé par la capture des électrons par les noyaux transformant les protons en neutrons. Cette réaction nucléaire s’accompagne d’une émission de neutrinos, qui emportent la phénoménale quantité d’énergie potentielle gravitationnelle dégagée par la contraction.
En quelques dixièmes de seconde, la matière atteint l’incroyable densité d’un million de tonnes par centimètre cube, l’équivalent d’une plate-forme pétrolière compactée dans le volume d’un dé à coudre !
…AUX SUPERNOVAS
Le cœur de l’étoile, désormais constitué de neutrons, se réduit à une petite sphère d’une dizaine de kilomètres de diamètre : une étoile à neutrons vient de se former, sur la surface rigide de laquelle le reste de l’étoile en effondrement vient s’écraser. La violente compression qui en résulte produit une onde de choc qui remonte à travers les couches externes de l’étoile. Son passage chauffe la matière à des températures supérieures au milliard de degrés et provoque des réactions de fusion qui produisent des éléments lourds, notamment du nickel et du cobalt radioactifs. Quand l’onde de choc atteint la surface, la température s’élève brutalement et l’étoile entière explose, éjectant les éléments qui la composent à des vitesses pouvant atteindre plusieurs dizaines de milliers de kilomètres par seconde. Cet événement, appelé « supernova », marque la mort d’une étoile massive.
Ressource multimédia
Explosion de la Supernova SN2014J
Explosion de la Supernova SN2014J - © ESA/ATG medialab
La supernova SN2014J a explosé en 2014. Grâce aux observations du satellite Integral, de l’ESA, qui détecta les rayons gammas des éléments radioactifs synthétisés durant l’explosion, les astrophysiciens ont eu la preuve que ce type de supernova est bien dû à l’explosion d’une naine blanche accrétant de la matière d’une étoile compagnon.
Cette séquence de vues d’artiste représente ces différentes étapes. L’image 1 montre une naine blanche, étoile dont la masse est voisine de celle du Soleil mais comprimée dans un volume équivalent à celui de la Terre, qui capte la matière d’une étoile compagnon.
Les mesures du satellite Integral suggèrent qu’une ceinture de gaz entoure l’équateur de la naine blanche (image 2).
Cette ceinture gazeuse détone (image 3) et déclenche l’explosion de l’étoile en supernova (image 4). La matière transformée par l’explosion entre en expansion rapide (image 5) et finit par devenir transparente aux rayons gammas (image 6).
ENRICHIR L’UNIVERS
L’influence des supernovas sur le milieu interstellaire se fera sentir pendant des millions d’années, car cette explosion propulse les noyaux synthétisés durant toute la vie de l’étoile, ainsi que ceux qui furent produits lors du passage de l’onde de choc.
Petit à petit, les supernovas enrichissent ainsi le milieu interstellaire en nouveaux noyaux, qui entreront dans la composition de futures étoiles et de leurs éventuelles planètes.
Absents au début de l'Univers, ces noyaux lourds ne représentent aujourd'hui que 2 % des atomes de matière. Les noyaux rencontrés sur Terre sont quasiment tous issus de la nucléosynthèse stellaire, et le fer ne provient que des supernovas.
Les chercheurs ont longtemps cru que les supernovas offraient les bonnes conditions pour former les noyaux plus lourds que le fer, au moment de l’explosion, lorsque des noyaux lourds sont exposés à un intense flux de
neutrons.
Selon la masse initiale de l’étoile, l’implosion du cœur de fer laisse subsister un objet compact nommé étoile à neutrons. Des modèles développés ces dix dernières années suggèrent que la formation des éléments les plus lourds, comme l'or, nécessite la rencontre de deux étoiles à neutrons pour former un trou noir. Cet événement se manifeste par l’émission d’un flash de rayonnement gamma durant une fraction de seconde, un « sursaut gamma » si puissant qu’il est observable jusqu'à des distances cosmologiques.
La formation de l’or, et plus généralement des noyaux plus lourds que le fer, passerait donc par l’évolution d’étoiles beaucoup plus massives que le Soleil dont l’explosion donne naissance à des étoiles à neutrons, puis par la coalescence explosive de ces étoiles à neutrons en un trou noir. On comprend pourquoi l’or est cher : il est rare et l’Univers a beaucoup peiné pour le produire !
Nous sommes tous constitués
de poussières d’étoiles.
LES DIFFÉRENTS TYPES DE SUPERNOVAS
À la classification spectroscopique traditionnelle (avec ou sans hydrogène dans le spectre) s’est substituée récemment une distinction physique caractérisant le mode d’explosion : thermonucléaire ou gravitationnel.
Les supernovas thermonucléaires
Lorsque deux étoiles cohabitent, elles tournent autour de leur centre de gravité commun en un système binaire.
Les supernovas thermonucléaires surviennent dans les systèmes binaires formés d’une géante rouge en fin de vie et d’une naine blanche. La matière de la première peut tomber sur la seconde ; lorsque la masse de la naine blanche atteint 1,4 fois celle du Soleil, elle devient instable, s’effondre et explose.
Toute la matière est dispersée dans l’espace, il ne reste rien au centre de la supernova.
Les supernovas gravitationnelles
Une supernova gravitationnelle correspond à l’explosion d’une étoile massive en fin de vie. L’implosion de son cœur, devenu instable au moment de la combustion du silicium en fer, est rapidement suivie de l’expulsion de son enveloppe. Cet effondrement gravitationnel central libère une fabuleuse énergie (des milliards de fois supérieure à la luminosité de notre Soleil !), essentiellement sous forme de neutrinos. Seul un dix millième de l’énergie totale se manifeste sous forme de lumière visible.
Ces deux variétés de supernovas (thermonucléaires et gravitationnelles) ne produisent pas les éléments dans les mêmes proportions, et ne se produisent pas au même rythme (une thermonucléaire pour cinq gravitationnelles). Les supernovas gravitationnelles produisent en quantité les éléments entre le carbone et le calcium, l’oxygène étant le plus abondant, alors que les thermonucléaires fournissent le fer et les éléments voisins.
Dernières supernovas étudiées
Une supernova peut être visible à l’œil nu depuis la Terre si elle explose dans le périmètre de notre galaxie ou dans les galaxies satellites. Les observatoires et les satellites du monde entier pointent alors immédiatement leurs instruments et leurs détecteurs dans sa direction.
C’est arrivé en février 1987 quand la supernova, baptisée SN1987A, est apparue dans le Grand nuage de Magellan. Elle a permis, en raison de sa proximité d’effectuer une vaste moisson de résultats scientifiques.
Plusieurs rayonnements émis ont pu être observés : la lumière visible, les ondes radio, l’ultraviolet et l’infrarouge. Pour la première fois, un flux de neutrinos a pu être détecté et mesuré. C’était une supernova gravitationnelle.
En septembre 2006, la supernova SN2006gy, dans la galaxie NGC 1260 de la constellation de Persée, a fait sensation quand elle est apparue dans le ciel.
Son pic de luminosité était cent fois plus important que celui d'une supernova classique et cette luminosité s'est prolongée pendant plus de trois mois. Elle pourrait résulter de l'explosion d'une étoile dont la masse dépasserait 100 fois celle du Soleil.
La supernova SN2014J a été détectée en janvier 2014, fruit d’une explosion d’étoile dans la galaxie du Cigare, à seulement 11,5 millions d’années-lumière de la Terre.
Son étude va permettre de peaufiner les modèles informatiques.
DOCUMENT cea LIEN |
|
|
|
|
|
|
LES GALAXIES |
|
|
|
|
|
Les galaxies
Publié le 30 avril 2017
Notre Univers est composé de nombreuses galaxies, dont notre galaxie la Voie Lactée. Mais qu’est-ce qu’une galaxie ? Toutes les galaxies se ressemblent-elles ? Comment les étudier et les décrire ? Quels sont les enjeux de la recherche sur ces objets spatiaux ? Lumière sur les galaxies.
QU’EST-CE QU’UNE GALAXIE ?
Dans le passé, l’Homme n’a observé que des « tâches floues », des nébuleuses de lumière dans lesquelles les premiers télescopes ne permettaient pas de distinguer individuellement les étoiles. Au fil du temps, les outils d’observation se sont améliorés. Ce n’est finalement que dans les années 1920 que les galaxies ont été décrites comme des systèmes constitués de milliards d’étoiles, de gaz et de poussières interstellaires. Les astrophysiciens ont aussi pu mettre en évidence un déplacement des galaxies et un mouvement de rotation de celles-ci sur elles-mêmes. Ce mouvement suggère que quelque chose d’autre, de très massif, compose également les galaxies. Cette matière invisible - car n’émettant pas d’elle-même de la lumière - , se manifeste seulement par la force gravitationnelle qu’elle exerce sur les étoiles dans une galaxie. Elle est dénommée par les astrophysiciens « matière noire ».
A l’échelle de l’Univers, on peut assimiler une galaxie à un objet spatial unique, certes gigantesque et extrêmement massif, mais dont tous les éléments forment un ensemble cohérent, liés entre eux par la gravitation.
LES GALAXIES SONT-ELLES TOUTES SEMBLABLES ?
Dans l’Univers, il existe des centaines de milliards de galaxies qui se différencient par leur composition, leur âge, leur couleur, leur forme, leur activité et leur évolution.
Quel est le moteur de l’évolution des galaxies ?
Les galaxies créent en leur sein de nombreuses étoiles et une même galaxie peut contenir plusieurs générations d’étoiles. Lorsqu’une galaxie produit beaucoup d’étoiles de manière simultanée, elle génère une « flambée de formation d’étoiles ». Les astrophysiciens considèrent que l’évolution des galaxies est liée à leur capacité à fabriquer des étoiles. Lorsqu’elle ne produit plus d’étoiles, une galaxie meurt. Mais cela ne signifie pas qu’elle se désintègre ou que toutes les étoiles s’y éteignent, certaines continueront à « vivre » pendant des dizaines de milliards d’années.
Et si les étoiles constituant une galaxie étaient des grains de sable ?
Si chaque étoile est comparée à un grain de sable de 0,1 mm, alors le grain de sable représentant le Soleil serait placé à 2,9 km de l'étoile la plus proche, Proxima du Centaure (distante de 40,1 mille milliards de km). De plus, si chaque étoile de la Voie Lactée est représentée par un grain de sable, comme il y a environ 100 milliards de grains de sable par mètre cube de sable, il nous faudrait près de 2,5 m3 pour toutes les comptabiliser… De même, si chaque étoile de l’Univers était un grain de sable, alors il y en aurait dans tout l’Univers au moins 10 à 100 fois de plus que tous les grains de sable (des plages, côtes et mêmes déserts !) de la Terre.
Comment évolue la composition des galaxies ?
La composition des galaxies n’est pas immuable. Aujourd’hui, si 10% de la masse d’une galaxie est composée de gaz, celui-ci représentait la moitié de sa masse il y a 9 milliards d’années. Cela signifie que quand l’Univers était plus jeune, il y avait une autre organisation des étoiles et des nuages de gaz interstellaire au sein des galaxies. De même, les poussières stellaires ne se sont formées qu’au fil de l’existence de l’Univers.
Quelles sont les grandes familles de galaxies ?
Les galaxies spirales (l’essentiel des galaxies) contiennent de 10 à 100 milliards d’étoiles et produisent de 1 à 1 000 étoiles/an. Ces galaxies sont souvent constituées de bras qui s’enroulent sous forme de spirale en raison d’ondes de densité, des accumulations de matière liées à la rotation de la galaxie. Les galaxies elliptiques et irrégulières ont, quant à elles, un mouvement de rotation sur elles-mêmes moins prononcé. Les galaxies elliptiques (environ 20 % des galaxies de notre Univers) contiennent de 10 millions à 1 000 milliards d’étoiles. Celles-ci sont souvent très âgées au contraire des galaxies dites « irrégulières » (très peu nombreuses) qui abritent de 100 millions à 10 milliards d’étoiles, essentiellement très jeunes. Lorsque la masse d’une galaxie dépasse 10 milliards de fois celle du Soleil, on parle alors de galaxie massive et la plupart des chercheurs pensent qu’elles possèdent également untrou noir supermassif en leur centre.
La collision des galaxies, un billard spatial ?
Une galaxie se déplace dans l’espace et peut entrer en collision avec une autre galaxie, menant à une modification importante de leur forme. C’est essentiellement la gravité qui fait interagir ces corps stellaires. Mais une collision de galaxies ne signifie pas un choc violent d’une étoile contre une autre étoile car l’espace est très important entre les étoiles et ces collisions sont très rares. Seuls les nuages de gaz peuvent s’entrechoquer car ils sont beaucoup plus diffus. Le gaz va alors se comprimer et s’échauffer puis se refroidir, pouvant créer au passage de nouvelles étoiles.
Deux galaxies différentes peuvent aussi fusionner, menant à une réorganisation de la matière à l’intérieur d’un nouvel ensemble unique : les étoiles vont réorganiser leurs orbites et des étoiles peuvent même être éjectées en dehors de la galaxie fusionnée. La forme d’une galaxie, telle une cicatrice pour un humain, peut donc nous renseigner sur les événements ayant eu lieu dans sa vie.
ET LA VOIE LACTÉE ?
Contrairement à ce que l’on pourrait penser, la Voie Lactée, notre galaxie, qui nous entoure et dans laquelle le système solaire évolue, est assurément la plus connue mais également l’une des plus difficiles à observer et à étudier à l’échelle globale. Alors que l’on observe facilement les systèmes stellaires voisins, il est difficile de déterminer la couleur ou encore la masse totale des étoiles qui composent la Voie Lactée comme on le fait pour les autres galaxies. On ne peut en effet en sortir physiquement, pour en prendre une photographie d’ensemble. C’est pourquoi nous devons nous contenter d’observer la Voie Lactée depuis notre planète en émettant des hypothèses sur son évolution et son histoire. En réalisant un panorama du ciel qui nous entoure, on constate que la distribution des étoiles est aplatie et concentrée le long d’une bande laiteuse qui a donné le nom de la Voie lactée : cela signifie que nous ne sommes pas au centre de notre galaxie. Puis, en considérant le nombre d’étoiles dans toutes les directions, leur distance par rapport à notre système solaire, et en comparant ces observations à d’autres galaxies proches aux compositions et morphologies similaires, il est possible de reconstituer la forme et les bras de la Voie Lactée.
On a ainsi pu établir que notre Voie Lactée est une galaxie spirale de taille moyenne dont le disque fin comprend des bras spiraux, un bulbe, et un halo diffus d’étoiles et d’amas globulaires. D’un diamètre d’environ 100 000 années lumières et relativement âgée, elle contiendrait environ 200 milliards d’étoiles et ne créerait seulement qu’une étoile par an. Sa masse (hors celle de la matière noire) est composée à 90 % d’étoiles, environ 10 % de gaz et 0,1 % d’autres corps (poussières, astéroïdes et planètes comme la Terre) et enfin à 0,1 % correspondant à son trou noir central. Celui-ci est 4 milliards de fois plus massif que le Soleil et nommé Sagittarius A*. Enfin, l’observation du bras d’étoiles Sagittaire nous apprend que la Voie Lactée est en partie le résultat de fusions avec plusieurs petites galaxies. Les modèles astronomiques prévoient également que notre galaxie fusionnera dans quelques milliards d’années avec la galaxie d’Andromède.
COMMENT OBSERVER ET CONSTRUIRE UNE IMAGE DE GALAXIE ?
Avec des techniques de spectroscopie, il est possible d’observer en lumière visible les étoiles et le gaz. En lumière infrarouge, ce sont les poussières interstellaires, provenant essentiellement des résidus d’étoiles mortes, que l’on peut voir par effet de contraste. Cela permet d’étudier l’évolution des galaxies. Plus les galaxies sont lointaines, plus elles sont difficiles à observer précisément.
En programmant un télescope de manière à prendre un cliché avec une très longue exposition à la lumière, on peut aussi voir plus d’étoiles et des petites galaxies moins lumineuses autour d’autres galaxies.
Cela peut paraître contre-intuitif mais plus une galaxie nous apparaît bleue, plus elle est chaude et lumineuse car constituée majoritairement d’étoiles jeunes. Et au contraire, les galaxies qui tendent le plus vers le rouge sont en moyenne composées d’étoiles âgées. En plus de l’âge des étoiles qui les composent, deux autres facteurs vont influer sur la couleur des galaxies: la quantité de poussières (plus il y en a, plus elles tendront vers le rouge) et l’expansion de l’Univers (qui crée un décalage des longueurs d’onde vers le rouge).
La lumière des galaxies
LES ENJEUX DE LA RECHERCHE AUJOURD’HUI ET DEMAIN
Observer des galaxies de plus en plus distantes permet de voir directement le passé car la lumière qu’elles nous envoient a mis des milliards d’années pour nous atteindre. Les astrophysiciens essayent de trouver les galaxies les plus anciennes afin de comprendre à quelle époque de l’histoire de l’Univers celles-ci se sont formées, si elles sont générées à partir d’un trou noir, comment elles ont évolué au cours du temps, comment elles continuent de former de nouvelles étoiles, etc. Etudier la distribution des galaxies dans le tissu cosmique permet aussi d’en apprendre plus sur l’expansion et la géométrie, courbée ou non, de l’Univers.
Cependant, il subsiste encore des débats sur certaines questions concernant les galaxies et notre Voie Lactée. Par exemple, toute la communauté scientifique est d’accord pour dire que la Voie Lactée est constituée d’un disque mais ne s’accorde pas encore sur son épaisseur. Un autre débat : pourquoi les galaxies ont-elles atteint leur pic d’activité en termes de formation d’étoiles il y a environ 9 milliards d’années ? De même, les chercheurs n’ont toujours pas réussi à trouver les étoiles dites de « première génération. » La communauté scientifique cherche aussi à comprendre quel est le rôle des trous noirs dans la dynamique de l’évolution des galaxies.
De nouveaux télescopes, tels que l’E-ELT (télescope géant européen) au sol et le JWST (James Webb Space Telescope) dans l’espace, et des missions spatiales comme la mission Euclid, consacrée à l’étude de l’énergie noire, sont actuellement développés afin de répondre à ces questions. Ils collecteront des données précises sur toutes les longueurs d’onde possibles émises par les galaxies et permettront de découvrir des galaxies plus petites tout en observant avec beaucoup plus de détails celles déjà connues. Ainsi, très récemment, le CEA a dirigé une collaboration internationale qui a détecté le plus lointain amas de galaxies jamais découvert dans l’Univers.
L’observation de cet amas, dont l’instantané a été pris lorsque l’Univers n’avait « que » 2,5 milliards d’années révèle plusieurs galaxies en pleines « flambées d’étoiles. »
DOCUMENT cea LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] - Suivante |
|
|
|
|
|
|