ecole de musique piano
     
menu
 
 
 
 
 
 

TUBERCULOSE

 

 

 

 

 

 

 

Tuberculose

Sous titre
Le bacille fait de la résistance

Selon l’OMS, un tiers de la population mondiale serait infecté par la bactérie responsable de la tuberculose. La maladie serait à l’origine d’1,5 millions de décès pour la seule année 2014, dont 400 000 décès de personnes atteintes d’une tuberculose associée à une infection par le VIH. Pour en finir avec cette maladie infectieuse, les chercheurs s’attèlent à la mise au point de nouveaux vaccins ainsi qu’au développement d’antibiotiques et d’outils diagnostics plus performants.
       

Dossier réalisé en collaboration avec Camille Locht, microbiologiste et directeur du Centre d’Infection et Immunité de Lille (Unité Inserm 1019) à l’Institut Pasteur de Lille

Comprendre la tuberculose

La tuberculose est une maladie infectieuse due à la bactérie Mycobacterium tuberculosis, aussi nommée  bacille de Koch d’après le nom de son découvreur.
Le plus souvent, la tuberculose touche les poumons. On parle alors de tuberculose pulmonaire. Cette forme de la maladie est caractérisée par :
*         une toux chronique accompagnée d’expectorations (crachats), parfois teintées de sang,
*         des douleurs dans la poitrine,
*         une fièvre, peu intense mais persistante, ainsi que des sueurs nocturnes,
*         une perte de poids et une faiblesse générale.

Plus rarement, dans environ 15% des cas, l’infection peut affecter d’autres régions de l’organisme : le rein, le cerveau, l’intestin, les os… Les symptômes associés à ces formes extra-pulmonaires de la tuberculose sont variables.
Dans environ 90% des cas, les personnes infectées par le bacille de Koch ne développent pas la maladie.  Le bacille peut rester "dormant" dans leur organisme durant des années. Ils sont alors asymptomatiques et ne sont pas contagieux. On parle alors de tuberculose latente.  Mais dans 5 à 10% des cas, le bacille va finir par se réveiller. La tuberculose devient alors active, symptomatique et contagieuse. C’est la tuberculose maladie. Les personnes dont le système immunitaire est affaibli, telles que les personnes vivant avec le VIH, celles souffrant de malnutrition ou de diabète, les fumeurs, ou encore les patients sous traitement immunosuppresseur, ont un risque beaucoup plus élevé de développer la maladie.

Un tiers de la population mondiale infectée
Contrairement aux formes extra-pulmonaires, la tuberculose pulmonaire est très contagieuse. Quelques bactéries suffisent à propager l’infection.
Le bacille de Koch se propage essentiellement par voie aérienne : une toux, un éternuement, un crachat, voire une simple discussion, projettent les bactéries dans l’air ambiant. Les personnes qui les inhalent deviennent à leur tour infectées. On estime qu’un patient infecté et non traité peut ainsi contaminer 10 à 15 autres personnes en l’espace d’une année. Les déplacements de population (migrations économiques, exils politiques, tourisme, mondialisation des échanges) favorisent la dissémination de la tuberculose sur toute la planète.
Et si le principal réservoir de Mycobacterium tuberculosis est l’homme atteint par une tuberculose active, le bacille est très résistant : il peut par exemple survivre plusieurs semaines dans un crachat, ou plusieurs mois dans la terre. Des cheptels d’animaux domestiques peuvent en outre constituer de bons réservoirs pour certaines souches proches, telles que M. bovis, créant un risque de transmission par voie alimentaire.
Au total, un tiers de la population mondiale serait actuellement infecté par le bacille de Koch selon l’OMS, avec  9,4 millions nouvelles infections et 1,5 millions de décès associés à la maladie en 2014. Ces chiffres font de la tuberculose la seconde maladie due à un agent infectieux unique la plus meurtrière, après le sida. Pour certains, il s’agit même de la première cause de décès par infection, car on ne meure pas du sida mais des infections liées à l’immunodéficience induite par le VIH.
La tuberculose est présente partout dans le monde. En 2014, le plus grand nombre de nouveaux cas a été enregistré en Asie du Sud-Est et dans la Région du Pacifique occidental (58% des nouveaux cas). L’Afrique compte cependant la plus grande incidence
incidence
Nombre de cas nouveaux d'une maladie, apparus durant une période de temps donnée.
, avec plus de 281 cas pour 100 000 habitants en 2014.

En France, des disparités territoriales et populationnelles
En France, la tuberculose est une maladie à déclaration obligatoire depuis 1964. En 2014, 4 827 nouveaux cas ont été déclarés, contre 6 714 en 2000. L’Ile-de-France compte à elle seule 36% des cas (1 747 cas), formant avec la Guyane une des principales régions atteintes. La maladie touche principalement les populations en situation de précarité, les migrants en provenance de régions comme l’Afrique subsaharienne et les personnes âgées.
Pour en savoir plus sur l’épidémiologie de la tuberculose en France
L’incidence mondiale de la tuberculose tend cependant à décroître, avec une diminution du nombre de nouveau cas de 18% depuis 2000. Quant à la mortalité associée, elle a quasiment été divisée par 2  depuis 1990. En mai 2014, l’Assemblée mondiale de la Santé, convoquée par l’OMS, a approuvé une stratégie visant à mettre un terme à l’épidémie mondiale de tuberculose : l’objectif est de réduire de 95% le nombre des décès et de 90% l’incidence de la maladie d’ici à 2035.
Pour en savoir plus sur la stratégie de l’OMS : Mettre fin à la tuberculose d'ici 2035

Grandes tueuses : La tuberculose

La tuberculose - documentaire – 14 min 11 – vidéo extraite de la série Grandes tueuses (2016)

Facteurs de risque
La tuberculose touche surtout les populations urbaines, les personnes âgées, les sujets en situation de précarité, les migrants et les patients infectées par le VIH. On parle d’une maladie sociale car elle se propage préférentiellement chez les communautés défavorisées et les individus désocialisés.
Toujours selon les données de l’OMS, au moins un tiers des personnes vivant avec le VIH dans le monde seraient infectées par le bacille tuberculeux. Or chez ces personnes, le risque de développer une tuberculose active est multiplié par 20 ou 30, par rapport aux personnes qui ne sont pas infectées par le VIH. Le VIH et le bacille tuberculeux tendent en effet à accélérer mutuellement leur progression dans l’organisme, le premier affaiblissant les barrières immunitaires qui forment généralement une résistance plutôt efficace contre le second. Leur association est donc meurtrière : la tuberculose est une cause majeure de mortalité chez les séropositifs. En 2014, environ 400 000 personnes sont décédées d’une tuberculose associée au VIH.
D’autres pathologies et traitements qui affaiblissent les défenses immunitaires augmentent la probabilité de réveiller une tuberculose latente. C’est le cas par exemple des médicaments destinés à augmenter la tolérance aux greffes.

Dépistage et diagnostic
Le dépistage de la tuberculose latente peut être proposé à des sujets à risque, en particulier aux personnes qui ont été en contact avec un malade, aux patients immunodéprimés ou aux enfants de moins de quinze ans vivant dans une zone à forte prévalence
prévalence
Nombre de cas enregistrés à un temps T.
. Dépister une tuberculose latente permet d’envisager de la traiter  et  de  diminuer  le  risque  de  développement  de la forme  active de l’infection.

Ce dépistage se fonde actuellement sur l’utilisation du test cutané dit de Mantoux, ou test d’intradermoréaction (IDR) à la tuberculine.  Ses résultats sont malheureusement difficiles à interpréter : il ne permet pas de déceler avec certitude un porteur sain, produisant parfois des faux négatifs et des faux positifs. Il ne permet pas non plus de distinguer les patients vaccinés par le BCG de ceux infectés par M. tuberculosis. Un autre type de tests existe : les tests de détection de la production d’interféron gamma (tests IGRA), réalisés  in  vitro sur  un prélèvement sanguin. Leur utilisation a reçu un avis favorable de la part de la Haute Autorité de Santé en 2007 et du Haut Conseil de la santé publique en 2011. Ils ne sont cependant pas encore utilisés dans la pratique courante, ni remboursés par l’Assurance maladie. Ils sont plus spécifiques, mais moins sensibles que le test cutané, notamment pour la détection de la tuberculose latente.

Le diagnostic de la tuberculose maladie est quant à lui proposé quand un patient souffre depuis plusieurs semaines de symptômes pulmonaires ne pouvant être expliqués par une autre pathologie infectieuse (ou tumorale). Le premier examen est une radio du thorax : un spécialiste peut alors étudier la présence d’anomalies typiques de la maladie dans sa forme pulmonaire. Cependant, cet examen manque de spécificité. Le diagnostic de certitude est microbiologique : on réalise un examen cytobactériologique des crachats (ECBC) sur trois jours consécutifs, avec mise en culture. En cas de négativité du résultat on peut pratiquer un contrôle sur des prélèvements par tubage gastrique ou fibroscopie bronchique. Plus récemment, un test se fondant sur l’amplification de l’ADN du bacille par PCR
PCR
Pour polymerase chain reaction. La réaction en chaîne par polymérase permet de copier en un grand nombre d'exemplaires des séquences d'ADN à partir d'une faible quantité d'acide nucléique au départ (ou présente).
a été mis au point. Il permet, dans une certaine mesure, de détecter des souches multi-résistantes en quelques heures.

4 000 gènes pour un bacille
En 1998, l’Institut Pasteur (France) et le Sanger Center (Royaume-Uni) ont séquencé le génome de Mycobacterium tuberculosis. Il compte 4 411 529 paires de bases et environ 4 000 gènes, soit un génome plutôt "riche" pour le monde bactérien. Depuis cette date, les microbiologistes du monde entier scrutent chaque élément de l’ADN tuberculeux. Il est en effet probable que la croissance lente de la bactérie, sa capacité de latence et de réactivation, ainsi que son aptitude à résister aux  traitements, soient autant de caractéristiques inscrites dans le génome bactérien. En le décryptant, les chercheurs ouvrent des pistes susceptibles de conduire à la mise au point de nouvelles stratégies pour prévenir et traiter la tuberculose.

Les enjeux du traitement et de la prévention

Des souches de plus en plus résistantes aux traitements
La tuberculose peut aujourd’hui être traitée et guérie. Le traitement repose sur des associations d’antibiotiques administrés au moins 6 mois, parfois plus longtemps. En général, il s’agit de quatre antibiotiques différents à prendre tous les jours pendant deux mois, puis deux antibiotiques à prendre tous les jours pendant quatre mois. Le respect du protocole est absolument nécessaire, sous peine de voir apparaître une résistance aux médicaments.
Certaines souches tuberculeuses sont en effet désormais résistantes à un ou plusieurs antibiotiques. Il existe de plus en plus de souches multirésistantes, c’est-à-dire devenues insensibles à plusieurs médicaments, dont au moins les deux plus efficaces (isoniazide et rifampicine). On voit aussi apparaitre des souches ultrarésistantes, insensibles à tous les médicaments existants, y compris aux antibiotiques de seconde intention (fluoroquinolones et antituberculeux injectables).
                                                                             Environ 480 000 cas de tuberculose multirésistante ont été rapportés dans le monde en 2014. Dans pratiquement un cas sur dix, il s’agit même d’une tuberculose ultrarésistante. Et si des cas de tuberculoses résistantes sont détectés dans tous les pays, plus de la moitié le sont en Inde, en République populaire de Chine et en Fédération de Russie.
Il est possible de soigner une tuberculose multirésistante, mais le traitement est long (deux ans au moins), le prix élevé (cent fois le coût d’un traitement normal) et les effets secondaires plus marqués pour le malade. Dès lors, convaincre les patients de ne pas laisser tomber est un défi.
Pour en savoir plus sur la résistance aux antibiotiques

Affaiblir le bacille, plutôt que renforcer le traitement
Comment lutter contre la multirésistance du bacille de Koch ? Une équipe de chercheurs coordonnée par Alain Baulard et Benoit Déprez (Inserm, CIIL, Institut Pasteur de Lille, CNRS, Université de Lille) a proposé une voie thérapeutique nouvelle. Ces chercheurs ont identifié quelques années plus tôt un gène de Mycobacterium tuberculosis qui contrôle sa sensibilité à certains antibiotiques. Abaisser le contrôle opéré par ce gène doit logiquement conduire à affaiblir le bacille. Le consortium de recherche a ainsi conçu, synthétisé et testé une molécule capable de modifier la sensibilité du germe à plusieurs antibiotiques antituberculeux - dont l’éthionamide. Le développement de ces travaux se poursuit.

Prévention et vaccin
Pour prévenir la transmission du bacille de Koch, il faut éviter le contact avec les sujets infectés. Cela présuppose un diagnostic le plus précoce possible de l’infection, et un isolement thérapeutique du patient pendant la phase où il est contagieux. En milieu hospitalier, diverses mesures prophylactiques sont appliquées : port du masque (patient, personnel, visiteurs), aération et exposition de la chambre à la lumière du jour, irradiation par ultraviolet (UV-C) auxquels le bacille est sensible...
Une autre arme est bien sûr la vaccination. Le seul vaccin contre la tuberculose actuellement disponible est le BCG (bacille de Calmette et Guérin). Ce vaccin a été mis au point au début du 20e siècle par deux chercheurs français, Albert Calmette et Camille Guérin, en atténuant le germe tuberculeux bovin (M. bovis).  Après avoir été obligatoire en France de 1950 à 2007, le BCG fait désormais l’objet d’une recommandation pour les seules populations à risque dans notre pays.

Le BCG protège efficacement les  jeunes enfants des formes graves de la maladie. Mais il ne protège pas complètement, et pas suffisamment longtemps : en particulier, il n’est pas assez efficace chez les adolescents et les jeunes adultes. Or 85% des décès attribuables à la tuberculose frappent cette population.
C’est pourquoi de nombreuses équipes de chercheurs travaillent à la mise au point de nouveaux vaccins : 16 d’entre eux sont en cours d’évaluation clinique (phases I à IIb), et bien d’autres à des stades de développement plus précoces.

TBVI : vers un vaccin plus efficace
TuBerculosis Vaccine Initiative (TBVI) est le nom d’une fondation internationale rassemblant une quarantaine de laboratoires académiques et industriels en Europe, dont des laboratoires Inserm. Son objectif : développer des vaccins plus efficaces que le BCG. La mise au point de candidats-vaccins suit différentes pistes : exploration de nouveaux antigènes
antigènes
Molécule capable de déclencher une réponse immunitaire.
et adjuvants, ingénierie génétique du bacille de Koch ou du BCG, optimisation des voies d’administration et utilisation de nouveaux vecteurs.

 

 DOCUMENT      inserm     LIEN

 
 
 
 

Quand la narcolepsie rend plus créatif

 

   

 

 

 

 

 

Quand la narcolepsie rend plus créatif


COMMUNIQUÉ | 04 JUIN 2019 - 9H00 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE | SANTÉ PUBLIQUE

Dormir nous rendrait-il plus créatif ? L’étude des personnes narcoleptiques, qui bénéficient d’un accès privilégié au sommeil paradoxal, pourrait apporter des informations clés pour comprendre ce phénomène. Une équipe associant des médecins de l’hôpital de la Pitié-Salpêtrière AP-HP et des chercheurs de l’Inserm, du CNRS et de Sorbonne Université au sein de l’Institut du Cerveau et de la Moelle épinière, en collaboration avec une équipe de l’université de Bologne en Italie, a mis en évidence l’existence d’une plus grande créativité chez les patients atteints de narcolepsie. Les résultats de l’étude suggèrent un lien entre une phase du sommeil particulière, le sommeil paradoxal, et les capacités créatives. Cette avancée importante, publiée dans la revue Brain le 29 mai 2019, ouvre de nouvelles pistes quant à la compréhension des fonctions cognitives du sommeil et des mécanismes de la pensée créative.

La narcolepsie est un trouble rare du sommeil qui touche environ 0.02% de la population générale. Il est caractérisé par des phases de sommeil incontrôlables. Ces endormissements ont la particularité de débuter souvent immédiatement par une phase de sommeil particulière, le sommeil paradoxal, une situation impossible à rencontrer en temps normal.
En effet, notre sommeil est composé de plusieurs phases et le sommeil paradoxal est systématiquement précédé d’une phase de sommeil lent. Il faut donc en général dormir au moins une heure avant d’accéder à ce sommeil particulier. Les personnes narcoleptiques bénéficient donc d’un accès privilégié au sommeil paradoxal. Ils présentent d’ailleurs beaucoup de symptômes parallèles associés au sommeil paradoxal, comme s’ils existaient chez eux une barrière poreuse entre l’éveil et cette phase du sommeil. Par exemple, la majorité d’entre eux sont des rêveurs lucides, c’est-à-dire conscients de rêver au moment où ils rêvent et pouvant même parfois influencer le scénario du rêve. Si plus de la moitié de la population adulte rapporte avoir fait un rêve lucide au moins une fois dans sa vie, les rêveurs lucides réguliers (plusieurs fois par semaine) sont très rares.

Les données de la littérature actuelle suggèrent par ailleurs qu’une sieste incluant une phase de sommeil paradoxal est suivie d’une période accrue de plus grande flexibilité mentale pour la résolution de problèmes. Les individus narcoleptiques ayant un accès privilégié à cette phase du sommeil, y aurait-il un effet à long-terme sur leur créativité ?

« En rencontrant régulièrement des patients narcoleptiques au sein de mon service, j’ai remarqué qu’ils semblaient plus évoluer dans des activités créatives que la moyenne ; pas uniquement dans leur vie professionnelle mais aussi dans leurs loisirs ou leur façon de penser.» explique le Pr Isabelle Arnulf, cheffe du service des pathologies du Sommeil à l’hôpital de la Pitié-Salpêtrière-AP-HP.
De ce constat est née l’idée d’explorer les capacités créatives de ces patients au regard de leur accès particulier au sommeil paradoxal.

Une étude conduite par Célia Lacaux, chercheuse à Sorbonne Université, et Delphine Oudiette chercheuse à l’Inserm, au sein du service des pathologies du sommeil de l’hôpital de la Pitié-Salpêtrière AP-HP dirigé par le Pr Isabelle Arnulf à l’ICM, a testé, en collaboration avec une équipe de l’université de Bologne en Italie, les capacités créatives de 185 personnes narcoleptiques et de 126 individus contrôles.
Définir et mesurer la créativité n’est pas une tâche aisée. En neuroscience, elle peut être définie comme la capacité à produire quelque chose d’à la fois original et adapté à des contraintes. Pour l’évaluer et obtenir la mesure la plus complète possible, les chercheurs ont employé deux méthodes :
*         Une mesure « subjective » à base de questionnaires de créativité chez 185 sujets narcoleptiques et 126 sujets contrôles : un test « de profils créatifs » axé sur la personnalité et le profil créatif, et un test « d’accomplissement créatif » portant sur les réalisations personnelles des participants dans différents domaines des arts et des sciences, de l’écriture au cinéma, en passant par l’humour, la cuisine ou encore l’architecture.
 
*         Une mesure « objective » de la performance créative grâce à un test « papier crayon » durant deux heures, appelé EPoC (Evaluation du Potentiel Créatif) chez 30 patients et 30 contrôles. Celui-ci évalue les deux grandes dimensions de la créativité: la pensée divergente qui demande, à partir d’un stimulus, de générer le plus de réponses possibles ; et la pensée convergente, qui requiert d’intégrer plusieurs objets dans une seule et même production, cohérente et originale.
Les individus narcoleptiques ont globalement obtenu des scores plus élevés que les sujets contrôles, aussi bien aux mesures objectives que subjectives. « Si les sujets narcoleptiques obtenaient des scores plus élevés que les sujets contrôles, seule une partie d’entre eux sortait vraiment du lot en matière d’accomplissement créatif. Ceci nous suggère de vraiment encourager les personnes narcoleptiques à exploiter leur potentiel. », précise Delphine Oudiette, chercheuse Inserm à l’ICM, qui a dirigé l’étude. « De plus, parmi les personnes narcoleptiques, le sous-groupe des rêveurs lucides obtenait les scores les plus élevés au test de profils créatifs, suggérant un rôle du rêve dans les capacités créatives. »

Cette créativité accrue pourrait s’expliquer par l’accès privilégié au sommeil paradoxal et aux rêves dont bénéficient les personnes narcoleptiques et qui leur donne l’occasion « d’incuber » leurs idées lors de siestes brèves pendant la journée.

« Il s’agit d’un argument fort pour dire que l’accès régulier au sommeil paradoxal et aux rêves favorise la créativité. Dors dessus, tu trouveras une solution! C’est aussi la première fois que nous montrons que les sujets narcoleptiques sont meilleurs que la moyenne dans un domaine aussi important que la créativité, apportant par là même une note positive à cette maladie difficile à vivre.» conclut Célia Lacaux, premier auteur de l’étude. Des travaux supplémentaires seront nécessaires pour confirmer cette hypothèse mais ces premiers résultats ouvrent des pistes importantes vers la compréhension des fonctions du sommeil paradoxal et des rêves.

 

 DOCUMENT      inserm     LIEN 

 
 
 
 

Plus de 6000 gènes de résistance aux antibiotiques découverts dans le microbiote intestinal

 

 

 

 

 

 

 

Plus de 6000 gènes de résistance aux antibiotiques découverts dans le microbiote intestinal

COMMUNIQUÉ | 26 NOV. 2018 - 17H00 | PAR INSERM (SALLE DE PRESSE)

IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE | PHYSIOPATHOLOGIE, MÉTABOLISME, NUTRITION | TECHNOLOGIE POUR LA SANTE

Une étude européenne lève le voile sur la diversité des gènes de résistance aux antibiotiques présents dans les bactéries du microbiote intestinal. Des équipes des hôpitaux Beaujon et Bichat Claude-Bernard AP-HP, de l’Inra (MetaGenoPolis), de l’Institut Pasteur, de l’Inserm, des universités Paris Diderot et Paris-Saclay ont développé une nouvelle méthode bioinformatique de prédiction de fonction des gènes basée sur la structure tridimensionnelle des protéines qu’ils codent. Les chercheurs, en collaboration avec d’autres équipes européennes, l’ont ensuite appliquée à un catalogue de plusieurs millions de gènes du microbiote intestinal. Grâce à cette méthode, ils ont identifié plus de 6000 gènes de résistance aux antibiotiques très différents des gènes connus. Ces travaux, publiés dans la revue Nature Microbiology, illustrent la diversité des gènes de résistance des bactéries de notre microbiote intestinal.

Afin d’établir le recensement des gènes de résistance aux antibiotiques dans le microbiote intestinal, il n’était pas possible de se baser seulement sur la similarité de séquence de l’ADN. En effet, l’ADN des bactéries intestinales est bien différent de celui des bactéries connues, ce qui n’est pas sans poser des difficultés aux outils de prédiction des fonctions des gènes basés sur la similarité avec les séquences d’ADN connues (représentées par des lettres).
Deux gènes aux fonctions identiques peuvent avoir deux séquences d’ADN très différentes alors que les structures tridimensionnelles des protéines qu’ils codent sont superposables. Partant de ce constat, les chercheurs ont développé une méthode de prédiction de fonction des gènes basée sur la similarité de structure tridimensionnelle.

Cette méthode de prédiction tout à fait originale a permis d’identifier plus de 6000 gènes qui pourraient conférer une résistance aux antibiotiques, avec une moyenne de plus de 1000 gènes de résistance par individu.

Ces prédictions dites « in silico » ont pu être vérifiées au laboratoire sur certaines classes d’antibiotiques comme les bêta-lactamines. De plus, la composition en gènes de résistance était très liée à la composition en espèces bactériennes, et les chercheurs ont ainsi pu identifier six groupes d’individus en fonction de leurs gènes de résistance. Ces 6 groupes sont appelés “résistotypes” et sont connectés aux entérotypes décrits précédemment.
Cependant, la majorité de ces gènes de résistance n’ont jamais été retrouvés ni sur des éléments génétiques mobiles, ni dans des bactéries pathogènes, soutenant que leur transfert vers ces dernières est un événement rare.
Les chercheurs ont également observé que l’exposition aux antibiotiques influait sur le contenu en gènes de résistance : une exposition courte et forte altérait la composition du microbiote intestinal et diminuait paradoxalement l’abondance des gènes de résistance. En revanche une exposition chronique était associée à une augmentation de l’abondance des gènes de résistance en parallèle ici aussi d’une altération de la composition du microbiote.
Ces résultats ouvrent de nouvelles perspectives quant au rôle des gènes de résistance du microbiote intestinal qui semblent, dans leur majorité, peu à risque d’être transférés vers des bactéries pathogènes, et qui pourraient être bénéfiques en protégeant leurs hôtes de l’impact des antibiotiques dans le microbiote intestinal puisque des bactéries non pathogènes seraient ainsi protégées.
 

En savoir plus

Le microbiote intestinal est composé de plusieurs centaines voire milliers d’espèces de microorganismes, principalement de bactéries. Ces dernières sont naturellement sensibles aux antibiotiques et pour s’en prémunir, certaines ont développé des mécanismes de résistance – les gènes qui les codent étant désignés « gènes de résistance aux antibiotiques ». Si les gènes de résistance aux antibiotiques portés par les bactéries pathogènes – comme le staphylocoque doré – sont bien connus, ce n’est pas le cas des bactéries intestinales en raison de la difficulté à les étudier. En effet, la plupart d’entre elles ne sont pas cultivables en laboratoire et les connaissances sur leurs propriétés sont largement basées sur le séquençage de leur ADN
.

 

  DOCUMENT      inserm     LIEN

 
 
 
 

Des ciseaux moléculaires pour modifier les génomes avec précision

 

 

 

 

 

 

 

Edition génomique

Sous titre
Des ciseaux moléculaires pour modifier les génomes avec précision

L’édition génomique


génomique
Étude conduite à l’échelle du génome, portant sur le  fonctionnement de l’organisme, d’un organe, d’une pathologie...
permet d’effectuer des modifications génétiques ciblées dans tout type de cellule, grâce à des ciseaux moléculaires spécifiques. Disponibles depuis les années 80, ces outils ont gagné en efficacité et en spécificité au cours du temps. En 2012, l’avènement du système CRISPR-Cas9, caractérisé par sa très grande simplicité et son coût modeste, a révolutionné cette approche : l’édition génomique a désormais gagné tous les domaines de la science et de la médecine.
Elle permet aux chercheurs d’effectuer les modifications génétiques de leur choix, afin de développer des modèles cellulaires et animaux sur mesure, pour progresser dans la connaissance du développement des organismes vivants, des maladies, ou encore pour tester des molécules thérapeutiques. Des premiers essais cliniques se fondant sur cette approche ont débuté, visant à à traiter des maladies monogéniques, certains cancers ou encore des maladies infectieuses.
       

Dossier réalisé en collaboration avec Carine Giovannangeli (unité 1154 Inserm/CNRS/MNHN, équipe Edition du génome, réparation des cassures double-brin de l’ADN et réponses cellulaires Paris), Anne Galy (unité 951 Inserm/Université d'Evry Val d'Essonne/Ecole pratique des hautes études, Integrare et unité de service 35, Accélérateur de recherche technologique en Thérapie génomique, Généthon, Evry) et Hervé Chneiweiss, président du Comité d'éthique de l'Inserm

Comprendre l’édition génomique

Modifier une séquence d’ADN de façon ciblée
L’édition du génome (de l’anglais genome editing) consiste à modifier le génome d’une cellule avec une grande précision. Il est possible d’inactiver un gène, d’introduire une mutation ciblée, de corriger une mutation particulière ou d’insérer un nouveau gène. Cette technique de génie génétique fait appel à des nucléases
nucléases
Enzyme capable de couper des acides nucléiques au niveau des liaisons phosphodiesters.
modifiées, appelées « ciseaux moléculaires ».
Ces nucléases coupent l’ADN à un endroit prédéfini du génome, dépendant de sa séquence. Un système de réparation naturel de l’ADN (NHEJ pour Non-Homologous End-Joining) se met alors en marche, pour « recoller » ensemble les deux extrémités libres générées par la coupure. Mais ce système de réparation introduit des erreurs, conduisant à la mutation du gène ciblé par la nucléase. Dans ce cas, la mutation introduite est donc aléatoire.
Il est également possible de modifier la séquence visée selon ses souhaits. Il faut alors délivrer à la cellule, en plus des nucléases, un brin d’ADN présentant la séquence désirée, flanquée d’extrémités homologues à celles du site de coupure. Un autre système cellulaire de réparation va alors intervenir (la recombinaison homologue) et « incorporer » la séquence d’ADN fournie au moment de la réparation, conduisant à son insertion définitive dans le génome.

L’édition de base : l’édition génomique sans coupure d’ADN
Récemment, des nucléases Cas ont été transformées pour qu’elles ne coupent plus le site du génome reconnu : la nucléase sert de point d’ancrage pour l’acheminement d’autres protéines capables de transformer une base de l’ADN en une autre, induisant ainsi une mutation ciblée sans coupure. Cette technique, l'édition de base, pourrait s’avérer particulièrement intéressante dans les cellules où les processus naturels de réparation des cassures de l’ADN sont peu performants, rendant l’édition génomique classique (avec coupure double brin) inefficace.
L’ensemble de ces techniques fonctionnent dans tous les types de cellules : humaines, animales, végétales, bactériennes, adultes ou embryonnaires.

Plusieurs types de ciseaux moléculaires disponibles
Toutes les nucléases utilisées pour l’édition génomique sont dérivées de systèmes bactériens naturels. Ce sont des enzymes dites de restriction, capables de couper l’ADN double brin à des endroits spécifiques. Ces enzymes sont modifiées en laboratoire pour reconnaitre et couper les séquences souhaitées dans l’ADN.
Les méganucléases
Ces protéines sont des enzymes de restriction extrêmement spécifiques, capables de reconnaître et de cliver une séquence d’ADN en s’assemblant par paire de sous-unités identiques (homodimères). Leur répertoire naturel étant limité, l’ingénierie de nouvelles méganucléases est nécessaire afin de pouvoir cibler un site particulier dans un génome. De ce fait, cette approche est difficile et réservée aux spécialistes de ce système. Leur utilisation est très limitée.  
Les nucléases à doigts de zinc
Ces protéines artificielles sont composées de peptides
peptides
Enchaînement d’acides aminés. L’assemblage de plusieurs peptides forme une protéine.
dits à doigts de zinc, qui reconnaissent une séquence d’ADN, et d’une nucléase (FokI) qui coupe l’ADN. Chaque peptide à doigt de zinc reconnaît une courte séquence de trois nucléotides
nucléotides
Molécule de base de l’ADN et de l’ARN.
: l’assemblage de plusieurs d’entre eux permet de cibler des séquences plus longues, de manière plus spécifique. En outre, pour couper, les nucléases à doigt de zinc agissent à deux, sur deux sites proches l’un de l’autre. Cela permet une action catalytique des enzymes FokI. Une modification génomique nécessite donc deux nucléases à doigts de zinc, dont la construction et l’assemblage sont très complexes. Cela limite leur utilisation.


Les TALENs
Les TALENs (pour Transcription Activator Like-Effectors) sont également utilisés par paires, ciblant deux séquences d’ADN proches. Ils comprennent un domaine de fixation à l’ADN composé d’une combinaison de quatre peptides, chacun de ces peptides reconnaissant spécifiquement une des quatre bases de l’ADN. En jouant sur l’enchainement de ces peptides, il est possible de cibler une séquence d’ADN spécifique. Ce domaine de fixation est associé à une nucléase Fok1 qui assure la coupure double brin.
Comme avec les nucléases à doigt de zinc, un travail d’ingénierie protéique est nécessaire pour construire et assembler les TALENs destinés à l’édition génomique. Des programmes informatiques permettent de faciliter ce travail comme E-Talen et une bibliothèque de TALENs pouvant reconnaitre plus de 18 700 gènes est disponible. Les TALENs sont plus faciles à produire que les nucléases à doigt de zinc et présentent une très bonne efficacité.


CRISPR-Cas
Cette fois c’est un ARN
ARN
Molécule issue de la transcription d'un gène.
guide (CRISPR pour Clustered Regularly Interspaced Short Palindromic Repeats), et non une protéine, qui reconnait la séquence cible à couper. Il est associé à une nucléase Cas, le plus souvent Cas9, qui coupe l’ADN à cet endroit précis.

Disponible depuis 2012, le système CRISPR-Cas9 a révolutionné l’édition génomique par sa simplicité. Les scientifiques l’utilisent désormais quotidiennement dans tous les domaines de recherche : médecine, agronomie, environnement, etc. Fabriquer des ARN guides est infiniment plus facile que fabriquer des protéines. C’est aussi beaucoup plus rapide (quelques jours, contre plusieurs semaines ou mois pour la fabrication de nucléases à doigt de zinc ou de TALENs) et beaucoup moins coûteux.
À peine trois mois après le développement de cet outil, plusieurs laboratoires publiaient déjà des résultats obtenus avec cette technique, confirmant son potentiel. Cinq ans après, plusieurs milliers d’articles de recherche - fondamentale ou appliquée, conduite chez d’innombrables espèces, visant toutes sortes d’applications - étaient publiés.


CRISPR/Cas9 : une méthode révolutionnaire – animation pédagogique – 2 min 10 – Inserm, 2016

Une utilisation dans tous les domaines du vivant et particulièrement en recherche biomédicale
L’édition génomique est utilisée dans différents domaines : l’agroalimentaire pour produire des espèces améliorées (par exemple des moutons et des veaux avec une masse musculaire accrue en Amérique du sud), l’agronomie (par exemple avec la modification génétique d’espèces végétales envahissantes, pour limiter leur croissance) et bien sûr la santé. Et ce, à tous les niveaux de la recherche : fondamentale, appliquée et clinique. Toutefois, l’ensemble de ces travaux en est encore largement au stade expérimental.
Produire des modèles animaux
L’édition génomique permet de développer de nouveaux modèles animaux (moutons, vaches, furets, lapins, porcs, etc.), en modifiant le patrimoine génétique d’embryons grâce au système CRISPR-Cas9 avant de les transférer chez des femelles. Les chercheurs peuvent ainsi disposer à volonté de modèles animaux variés et adaptés à l’étude du développement, de pathologies ou pour des essais thérapeutiques.

Deux singes macaques génétiquement modifiés sont par exemple nés en 2014, suite à l’introduction de mutations dans deux gènes différents, l’un étant impliqué dans le métabolisme et l’autre dans l’immunité. Ces naissances ont prouvé que l’obtention de primates non humains génétiquement modifiés est possible pour étudier des maladies. Jusque-là, ce type de travaux n’étaient presque exclusivement possibles que sur des souris, des drosophiles et des poissons zèbres.

Produire des modèles cellulaires
Outre les modèles animaux, il est possible de produire des modèles de cellules en culture sur mesure. Jusque-là, l’étude de maladies rares était notamment limitée par la difficulté à disposer de cellules homozygotes pour une mutation récessive rare. Désormais, il est possible de créer ces mutations à partir de cellules saines ou d’inactiver l’un des allèles chez des individus hétérozygotes pour cette mutation rare.

Soigner par la thérapie génique
En permettant d’introduire un gène sain ou de corriger une mutation dans les cellules d’un patient, l’édition génomique ouvre la voie à de potentielles thérapies géniques. Mais elle se confronte aux mêmes difficultés que les autres techniques de thérapie génique, en particulier en ce qui concerne la vectorisation de l’ADN thérapeutique et les nucléases (l’étape qui consiste à faire entrer ce matériel dans les cellules à traiter).
Plusieurs possibilités s’offrent aux chercheurs pour une intervention ex vivo (les cellules à traiter sont prélevées chez les patients, modifiées au laboratoire, puis réadministrées au patient). La nucléase Cas peut être délivrée sous différentes formes (ADN, ARN ou protéine) avec l’ARN guide, et plusieurs méthodes de délivrance sont possibles, comme l’application d’un champ électrique (électroporation) ou l’utilisation de vecteurs chimiques qui augmentent la perméabilité des membranes cellulaires. Néanmoins les vecteurs viraux restent très performants, en particulier les lentivirus et les adénovirus pour des essais conduits in vivo.
Pour en savoir plus sur la thérapie génique

Guérir d'un coup de ciseaux, vraiment ? - animation pédagogique et interview - 3 min 23 - vidéo extraite de la série Canal Détox (2018)

Les enjeux de la recherche
L’immense majorité des travaux d’édition génomique concerne la recherche fondamentale ou pré-clinique, pour étudier les maladies, le développement normal ou pathologique et tester des molécules thérapeutiques. Néanmoins quelques essais cliniques ont débuté chez l’humain contre des maladies monogéniques, mais également en infectiologie ou encore cancérologie.
Un essai démarre chez des patients atteints d’hémophilie B. Des nucléases à doigts de zinc seront adressées vers leurs cellules du foie grâce à un vecteur viral
vecteur viral
Virus modifié qui sert à apporter un gène thérapeutique aux cellules.
(AAV). L’objectif est d’introduire une copie saine du gène codant pour le facteur IX de coagulation dans une région active du génome, permettant son expression en continu. Des essais de phase I débutent également pour le traitement de maladies lysosomales
maladies lysosomales
Elles sont causées par un défaut génétique affectant le lysosome, organite chargé d’éliminer les composants issus du métabolisme. Ceux-ci s’accumulent alors dans la cellule, ce qui finit par entraîner un dysfonctionnement des organes.
dues à un défaut de production de l’enzyme IDUA (alpha-L-iduronidase) : les mucopolysaccharidoses. Là encore, la stratégie testée consiste à utiliser des nucléases à doigts de zinc, adressées vers les hépatocytes de patients, pour forcer l’expression de l’enzyme déficiente.
Un essai de phase II est en cours en infectiologie, contre le VIH. Il repose sur l’utilisation de nucléases à doigts de zinc, ex vivo dans des cellules souches hématopoïétiques non infectés de patients. L’objectif est d’inactiver le gène CCR5. La mutation de ce gène étant connue pour protéger de l’infection par le VIH, les chercheurs espèrent rendre les cellules modifiées résistantes au virus et rétablir l’immunité des patients. Des essais sont par ailleurs en cours avec différentes sortes de nucléases dans le traitement de la dysplasie utérine. L’idée est d’éliminer le virus HPV 16 ou 18 dans les cellules précancéreuses : la persistance de cette infection contribue en effet à l’apparition de cancers et à leur mauvais pronostic. Le traitement testé consiste à inactiver des protéines virales (E6 et E7) associées à cette persistance.
Dans le domaine du cancer, l’édition génomique permet aussi d’armer les lymphocytes T de patients contre leur propre tumeur. La modification a lieu ex vivo, après prélèvement des cellules sanguines, et consiste à faire exprimer un récepteur synthétique (ou CAR pour Chimeric Antigen Receptor) qui reconnait des antigènes
antigènes
Molécule capable de déclencher une réponse immunitaire.
tumoraux. Une autre approche consiste à éliminer un frein à l’activation des cellules immunitaire : elle a été utilisée dans le lymphome
lymphome
Cancer du système lymphatique qui se développe aux dépens de lymphocytes.
B, avec des cellules T modifiées pour être capables de cibler l’antigène tumoral de surface CD19. Plusieurs essais cliniques démarrent également pour tester l’inactivation du gène PD-1 afin de stimuler le système immunitaire contre des stades avancés de cancers de l’œsophage, du poumon, des voies nasopharyngées ou encore de lymphomes. Des cellules sanguines seront prélevées chez les patients, modifiées génétiquement avec CRISPR-Cas9, multipliées puis réinjectées.

CRISPR-Cas9 chez l’embryon humain
Des équipes chinoises et américaines ont testé la technique CRISPR-Cas9 chez l’embryon humain pour corriger une mutation conférant la bêta-thalassémie ou une autre mutation associée à une pathologie cardiaque grave. Il s’agit de recherche fondamentale destinée à évaluer l’efficacité et la sécurité de CRISPR-Cas9 sur des embryons qui sont ensuite détruits. Les effets jusqu’ici obtenus restent largement perfectibles : le pourcentage d’embryons modifiés est faible et le risque de mosaïcisme (c’est-à-dire le risque que les cellules d’un même embryon ne possèdent pas toutes le même patrimoine génétique) est élevé.
Concernant des modifications génétiques qui seraient transmissibles à la descendance, la France a ratifié la convention d’Oviedo qui interdit d’effectuer ce type de travaux. Pour de nombreux organismes scientifiques et comités éthiques, dont celui de l’Inserm, même si la convention d’Oviedo était modifiée, il est à ce stade inenvisageable de recourir à une intervention chez un embryon qui serait destiné à faire naitre un enfant, faute de garanties d’efficacité et de sécurité suffisantes.

Le risque de mutations hors cible et autres
Comme pour tous les médicaments, un risque majeur de l’édition génomique en thérapie est celui d’avoir des effets indésirables.
Dans le cas de l’édition génomique, il existe en particulier un risque de créer des mutations hors cible, en dehors de la zone initialement visée. Les nucléases ciblent en effet des séquences spécifiques d’une longueur de 15-20 bases, mais elles peuvent couper « par erreur » des séquences très proches qui ne se distinguent que par une seule base. Ces mutations non désirées peuvent modifier l’expression de gènes qui n’étaient pas ciblés, les inactiver, voire conduire à l’apparition de cancers. Actuellement, des approches de séquençage complet du génome des cellules génétiquement modifiées ex vivo permettent, en principe, de vérifier l’absence de mutations hors cibles. La bonne représentativité de ces contrôles reste à vérifier. Ce problème devra être réglé avant de mener des essais in vivo. Des outils bio-informatiques sont développés dans ce but, pour mieux prédire le risque de mutations hors cibles et garantir une meilleure spécificité des nucléases. En outre, la performance et la spécificité de ces dernières continuent d’être améliorées.
D’autres difficultés ont été identifiées telles que le mosaïsme : au cours d’une expérience, toutes les cellules faisant l’objet d’une tentative d’édition génomique ne sont pas génétiquement modifiées de façon strictement identiques à la fin de celle-ci. Cela s’explique par le fait que cette technique fait appel aux processus naturels de réparation de l’ADN et que ceux-ci peuvent inégalement intervenir d’une cellule à l’autre.
Enfin, l’absence de recul ne permet pas de statuer sur la sécurité à long terme d’une modification génétique provoquée dans une cellule. Les essais cliniques qui démarrent apporteront de précieuses informations sur la tolérance et la sécurité de cette approche. Ils permettront notamment de savoir, d’ici deux ou trois ans, si les effets hors cible sont maîtrisés.

L’édition épigénomique
Une nouvelle variante de l’édition génomique appelée édition épigénomique a été proposée. Elle utilise le système CRISPR-Cas, mais la nucléase Cas ne coupe pas l’ADN : elle permet d’importer des molécules régulatrices de la transcription pour bloquer ou au contraire stimuler l’expression d’un gène ciblé. La séquence du gène n’est donc pas modifiée.
La preuve de concept
preuve de concept
Démonstration de l’intérêt d’une invention ou d’une technologie.
a été apportée fin 2017 in vivo chez la souris, avec l’activation forcée de gènes impliqués dans le contrôle du diabète, de la dystrophie musculaire de Duchenne et d’une maladie rénale aigue.
Cette approche écarte le risque de mutation hors cible, même si des effets secondaires de fixation hors cible peuvent exister. De plus, elle évite la modification irréversible du patrimoine génétique d’une cellule.

Les préoccupations éthiques
L’utilisation tous azimuts de l’édition génomique soulève des questions éthiques, d’autant que les premières applications se dessinent alors que la technique n’est pas parfaitement maitrisée.
C’est notamment le cas pour le guidage de gène. Cette stratégie permet de modifier génétiquement (par CRISPR-Cas9) une population d’animaux en forçant un gène modifié à se transmettre. Le but est de la rendre résistante à une maladie ou encore de la stériliser si l’espèce est considérée comme nocive. Le guidage de gènes pourrait être utilisé pour contrôler des espèces végétales envahissantes ou pour éliminer la résistance aux herbicides ou pesticides. Il est également envisagé pour lutter contre des vecteurs de transmission de maladies, comme les moustiques impliqués dans la transmission du paludisme ou de la dengue. Une étude test, menée au Panama en 2015, semble soutenir l’efficacité de la technique : elle aurait permis de réduire les populations de moustique Aedes aegypti qui transmettent la dengue.

Ces pratiques soulèvent beaucoup de questions, outre celles déjà discutées sur les effets hors cible : quel est le risque de contamination à des espèces autres que la population cible ? Quel est l’impact écologique et pour la biodiversité de l’éradication d’insectes pollinisateurs et nourriciers pour les larves de poissons ? Quels sont les risques à long terme pour l’espèce ? Comment arrêter efficacement la propagation du gène en cas de perte de contrôle de la technologie ? Des évaluations doivent être réalisées sur des périodes longues, avec l’élaboration de scénarios multiples par des équipes pluridisciplinaires combinant biologie moléculaire, écologie, sciences sociales, pour une évaluation prudente de la balance bénéfice/risque à long terme.

D’autres questions se posent avec la modification génétique d’espèces à des fins commerciales. Ainsi, en Argentine et en Uruguay, des fermes expérimentales modifient le génome de moutons et de veaux pour augmenter la taille de leurs muscles dans le but de produire deux fois plus de viande. Quelles sont les conséquences pour la qualité de vie animale et pour les consommateurs ?

Chez un embryon humain qui serait destiné à faire naître un enfant, ce type d’intervention est totalement inenvisageable à ce stade, faute de garanties d’efficacité et de sécurité suffisantes. Mais à terme, si la technique devient sûre et fiable, elle pourrait être utilisée dans des indications rares et très précises : par exemple pour éviter la transmission d’une maladie grave quand les deux parents en sont atteints et que le risque de donner naissance à un enfant malade est de 100%. Il s’agira alors de corriger la mutation chez l’embryon ou même en amont, au niveau des cellules germinales
cellules germinales
À l'origine de la formation des gamètes, leurs gènes sont transmis à la descendance.
avant la fécondation. L’académie de médecine s’est prononcée en faveur de cette possibilité si la technologie atteint l’efficacité et la sureté nécessaires. Mais la plus grande vigilance devra s’imposer pour éviter toute dérive en faveur de modifications génétiques « de confort ».
A lire aussi : Edition du génome : des possibilités inouïes qui posent des questions éthiques
SUR LE MÊME SUJET
*         Actualités
    * 14.05.19 CRISPR-Cas9 : vers un outil plus sûr pour éditer les génomes
    * 19.06.18 Édition du génome : des possibilités inouïes qui posent des questions éthiques
*         Communiqués de presse
    * 26.04.18 Découverte d’une thérapie d’avenir pour les hémoglobinopathies
    * 30.06.16 Les enjeux éthiques de la technologie CRISPR-Cas9
*         À découvrir aussi
    * Thérapie génique – dossier d’information
    * Génie génétique : CRISPR-Cas9 bouscule l'éthique – magazine Science&Santé n°31 (mai/juin 2016), pp 40-41
    * Saisine concernant les questions liées au développement de la technologie CRISPR-Cas9 – note du Comité d’éthique de l’Inserm (fév 2016)
    * Lancement de l’Association for Responsible Research and Innovation in Genome Editing (ARRIGE) – Paris, mars 2018

 

 DOCUMENT      inserm     LIEN
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon