ecole de musique piano
     
menu
 
 
 
 
 
 

Les déchets radioactifs

 


 

 

 

 

 

Les déchets radioactifs

Publié le 27 janvier 2015


On appelle déchet radioactif toute matière radioactive qui ne peut plus être ni recyclée ni réutilisée. Du fait de leur radiotoxicité, potentiellement dangereuse pour l’homme et pour l’environnement, les déchets radioactifs sont gérés de façon spécifique. Cette gestion est encadrée par la Loi. 90 % des déchets radioactifs (en volume), produits en France, disposent déjà d’une filière de gestion en stockage ultime. Les déchets de haute activité et de moyenne activité à vie longue (HA et MA-VL) n’ont pas encore de filières définitives de stockage. Ils sont conditionnés et entreposés par leurs producteurs, dans l’attente d’un site de stockage définitif.

DÉCHETS RADIOACTIFS : DÉFINITION

Les déchets radioactifs sont d’une grande diversité : éléments issus des combustibles usés des centrales nucléaires et des activités Défense pour la force de dissuasion, matériaux issus du démantèlement d'installations nucléaires, éléments radioactifs à usage industriel (techniques de contrôle de fabrication, stérilisation) ou médical (imagerie, radiothérapie), éléments issus de la recherche nucléaire…
En France, les déchets radioactifs sont classés selon deux critères :
*         Leur durée de vie, calculée en fonction de la « période radioactive » des radioéléments contenus : la période est le temps au bout duquel la quantité d’un même radionucléide est divisée par deux. Elle varie, selon les radionucléides, de quelques jours à plusieurs milliers d’années. On parle de déchets à vie courte (VC), quand la période est inférieure à 31 ans, et de déchets à vie longue (VL) au-delà.
*        
*         Leur niveau de radioactivité, exprimé en becquerels : cela correspond au nombre de désintégrations d’atomes par seconde. On parle de déchets de très faible activité (TFA), faible activité (FA), moyenne activité (MA) ou haute activité (HA).


Les différentes catégories de déchets radioactifs
En fonction de ces deux critères, il existe 5 catégories de déchets radioactifs :
*         Les déchets de très faible activité (TFA) issus principalement du démantèlement des installations nucléaires : gravats, bétons, ferrailles. Leur radioactivité décroit de manière significative en une dizaine d'années. Ils représentent 27% du volume des déchets radioactifs produits en France et contiennent moins de 0,01% de la radioactivité de l’ensemble des déchets.

*         Les déchets de faible et moyenne activité à vie courte (FMA-VC) : il s'agit essentiellement des déchets liés à la maintenance des installations nucléaires. Une partie provient aussi des hôpitaux ou des laboratoires de recherche. Ce sont des objets contaminés comme des gants, des filtres, des résines… Leur radioactivité décroit de manière significative en 300 ans environ. Les déchets FMA-VC constituent 63% du volume des déchets radioactifs, pour 0,02% de leur radioactivité.
*        
*         Les déchets de faible activité à vie longue (FA-VL) : cette catégorie couvre les déchets radifères (contenant du radium) provenant de minéraux utilisés dans certaines industries et les déchets de graphite issus du démantèlement des réacteurs nucléaires de 1ère génération. Les déchets FA-VL constituent 7% du volume des déchets radioactifs, pour 0,01% de leur radioactivité. 

*         Les déchets de moyenne activité à vie longue (MA-VL), issus du traitement des combustibles usés des centrales nucléaires : structures qui entourent les combustibles usés (coques et embouts) et effluents liquides issus du procédé de retraitement. Les déchets MA-VL constituent 3% du volume des déchets radioactifs, pour 4% de leur radioactivité.

*         Les déchets de haute activité à vie longue (HA-VL) correspondent aux déchets issus du traitement des combustibles nucléaires usés : ils contiennent les « produits de fission » et les « actinides mineurs » formés par les réactions nucléaires dans le combustible lors de son séjour en réacteur. Leur durée de vie peut s'étendre sur plusieurs milliers, voire plusieurs millions d'années. Ils ne représentent que 0,2% du volume des déchets radioactifs mais 96% de la radioactivité totale des déchets radioactifs en France.



ENJEU :
ASSURER UNE GESTION DURABLE
DES DÉCHETS RADIOACTIFS

Les déchets radioactifs contiennent des radionucléides potentiellement dangereux pour l’homme et pour l’environnement. Ils doivent donc être gérés de manière spécifique tout au long de leur durée de nuisance potentielle : inventaire et collecte des déchets radioactifs, conditionnement adaptés, solutions de stockage sûres et pérennes.
Juridiquement, les grands principes de gestion des déchets radioactifs sont indiqués par la loi du 28 juin 2006 relative à la gestion durable des matières et déchets radioactifs.
Ces principes sont les suivants :
*         protection de la santé des personnes et de l’environnement ;
*         réduction de la quantité et de la nocivité des déchets radioactifs ;
*         prévention ou limitation des charges supportées par les générations futures ;
*         principe pollueur-payeur qui prévaut en droit de l’environnement.

L'Agence nationale pour la gestion des déchets radioactifs (Andra) est l’organisme chargé de trouver, mettre en œuvre et garantir des solutions de gestion sûres pour l’ensemble des déchets radioactifs français.
Renouvelé tous les 3 ans, le plan national pour la gestion des matières et des déchets radioactifs (PNGMDR) constitue l’outil privilégié pour mettre en œuvre ces principes. Par ailleurs, tous les 3 ans, un inventaire complet des matières et des déchets radioactifs est réalisé et publié par l’Andra.
Aujourd’hui, 90 % des déchets nucléaires (en volume) produits en France disposent déjà d’une filière de gestion en stockage ultime. L’Andra dispose de centres dédiés de stockage et peut ainsi les gérer de façon industrielle : les déchets de très faible activité (TFA) sont stockés sur le site de Morvilliers (Aube), les déchets de faible et moyenne activité à vie courte (FMA-VC) sont stockés en surface sur le centre de Soulaines (dans l’Aube également).
Pour les déchets FA-VL, une démarche de recherche de site de stockage est conduite par l’Andra depuis 2008. En attendant la création d'un centre pouvant les accueillir, les déchets FA-VL sont entreposés dans des installations spécifiques, le plus souvent sur le lieu même où ils sont produits.
Enfin, les déchets de haute activité (HA) et de moyenne activité à vie longue (MA-VL) n’ont pas non plus de filière définitive de stockage. Dans l’attente d’un site de stockage définitif, ils sont conditionnés et entreposés dans des installations ad hoc par leurs producteurs, principalement à La Hague (Manche), Marcoule (Gard), Cadarache (Bouches-du-Rhône) et Valduc (Côte-d’Or). À terme, ils devraient être stockés sous terre, dans des formations géologiques de grande profondeur. C’est le projet Cigéo (Centre industriel de stockage géologique pour les déchets) de l’Andra, qui fait l’objet d’un débat public durant l’année 2013.

LES RECHERCHES SCIENTIFIQUES
SUR LES DÉCHETS RADIOACTIFS
La gestion des déchets radioactifs s’inscrit dans une démarche de progrès continu. Elle fait donc l’objet de programmes de R&D importants depuis la fin des années 1950, le but étant de minimiser la quantité de déchets, de concentrer la radioactivité et de garantir le confinement dans des conditions sûres.
Les déchets HA et MA-VL font l’objet de programmes de recherches particuliers dont les grandes orientations sont fixées par la loi du 28 juin 2006.
Cette loi définit trois axes de recherche et d’études complémentaires :
*         La séparation/transmutation des actinides mineurs, sous la responsabilité du CEA : il s’agit d’isoler puis de transformer les éléments les plus radiotoxiques en les « transmutant » en d’autres éléments moins radiotoxiques et à vie plus courte. Ces recherches sont menées par le CEA en lien avec celles menées sur les réacteurs nucléaires à neutrons rapides de 4ème génération, capables de réaliser la transmutation. Le CEA a coordonné les travaux de recherche menés par les établissements publics (Andra, CEA, CNRS, Universités) et leurs partenaires industriels (Areva, EDF) afin d’évaluer les perspectives industrielles des technologies étudiées. Un dossier sur le résultat de ces travaux a été remis au gouvernement fin 2012.


Le stockage en formation géologique profonde (projet Cigéo en Meuse / Haute-Marne), sous la responsabilité de l’Andra : le stockage des déchets de haute et moyenne activité à vie longue en formation géologique profonde est retenu par la loi comme solution de référence. Cet axe de recherche correspond au projet Cigéo de l’Andra. Dans le domaine de la R&D, le CEA y contribue avec des études notamment sur le comportement à long terme des colis de déchets en milieu géologique profond et sur la migration des radionucléides dans les couches géologiques.

Le 3ème axe d’étude porte sur l’entreposage des déchets radioactifs HA et MA-VL en attente d’une solution de gestion définitive. Il est aussi confié à l’Andra. Le CEA a contribué à des études de conception de ces installations d’entreposage.

 

  DOCUMENT     cea         LIEN

 
 
 
 

Le noyau atomique, un autre monde, une autre physique

 

 

 

 

 

 

 

L'ATOME

Le noyau atomique, un autre monde, une autre physique


Différentes modélisations des noyaux atomiques se sont succédées et complexifiées au cours des dernières décennies afin de mieux expliquer les observations de plus en plus variées et précises que les avancées techniques ont permis.
Publié le 1 juillet 2014


DESCENTE DANS L'ÉLÉMENTAIRE

Si l’échelle des atomes et de leur nuage électronique est le nanomètre (10-9m), celle des noyaux atomiques et des nucléons est le femtomètre (10-15m). La taille des particules aujourd’hui considérées comme élémentaires est de l’ordre de 10-18 mètres.
Le noyau est un objet extrêmement dense, complexe et petit. Il est comme une poupée russe qui contient des poupées gigognes de plus en plus petites. On a longtemps pensé que les protons et les neutrons étaient des particules élémentaires, c’est-à-dire qu’elles n’avaient aucune structure interne. Cependant, dans les années 1950 et 60, les observations faites avec des accélérateurs de particules, qui augmentaient régulièrement de taille et de puissance, montrèrent que de très nombreuses particules apparaissaient à l’issue des collisions.
Cette diversité a été interprétée en supposant qu’elles étaient composées de constituants encore plus petits, baptisés quarks. Les nucléons contiennent des quarks up et down qui s’assemblent par groupe de 3 grâce à l’interaction forte. Les quarks sont des fermions (comme les électrons) ; on en connaît actuellement six, répartis en trois générations. Ils interagissent attractivement en échangeant des gluons qui sont des bosons. En plus d’une charge électrique égale à -1/3e ou 2/3e, ils portent une autre charge appelée couleur : bleu, vert
ou rouge. Il ne s’agit pas de véritables couleurs mais d’un code obéissant à une logique ternaire ressemblant à celle de l’interaction forte.

En physique nucléaire, tout ou presque reste à découvrir.


STABILITÉ DES NOYAUX ATOMIQUES
La vallée de la stabilité

Les noyaux atomiques sont classés sous la
forme d’une carte qui décrit une vallée de
stabilité dont le fond est peuplé par les noyaux stables. L’évolution des noyaux instables, des hauteurs de la vallée vers le fond, illustre les différents types de radioactivité.

 
La décroissance radioactive
L’activité d’un échantillon radioactif (qui s’exprime en becquerels) diminue avec le temps du fait de la désintégration progressive des noyaux instables qu’il contient. Pour chaque isotope radioactif, et pour chacun des processus de désintégration qu’il peut connaître, on définit le temps de demi-vie, ou période radioactive, comme étant la durée au bout de laquelle la moitié des atomes radioactifs initialement présents a spontanément réagi. Selon les noyaux radioactifs concernés, cette période est très variable : cela peut aller de quelques millisecondes à plusieurs milliards d’années !

 
Composés de Z protons et de N neutrons, les noyaux atomiques doivent leur cohésion à l’interaction nucléaire forte. Elle se manifeste par l’échange de mésons π entre nucléons, comme l’avait imaginé Hideki Yukawa dès 1935 (1er physicien japonais à recevoir, grâce à cette prédiction, le prix Nobel de physique en 1949). Plus tard, on comprendra que les mésons π sont constitués d’un quark et d’un antiquark de la même famille.
Neutrons et protons se répartissent l’énergie du noyau et se trouvent animés de mouvements très rapides.
L’assemblage de nucléons peut être stable (on connaît 256 noyaux stables pour 80 éléments) ou instable (près de 3 000 noyaux). On définit, pour chacun de ces noyaux instables, un temps de demi-vie, ou période radioactive T, au bout duquel la moitié des noyaux s’est désintégrée. Les noyaux instables cherchent à revenir à un état stable, via une chaîne de désintégrations. Ainsi, le césium (période 1,2 s) devient néodyme stable en se changeant en baryum (période 14,5 s), lanthane (période 14,2 min), cérium (période 33 h) et praséodyme (période 13,5 j).


LA PHYSIQUE NUCLÉAIRE
La physique nucléaire est l’étude du noyau atomique et des interactions dont il est le siège.
C’est l’étude du noyau en tant que collection de nucléons qui bougent et s’attirent, celle des mécanismes intimes de leur attraction et de l’influence des quarks sur leurs propriétés et leurs comportements. Pour cela, on sonde les noyaux avec un véritable micro-scalpel adapté à leurs dimensions. On utilise un faisceau de particules accélérées qui permet de regarder quelle est la proportion des particules déviées ou absorbées. Il permet aussi de voir comment réagissent les noyaux : éjection de nucléons, production d’autres particules, etc.
Différentes modélisations des noyaux atomiques se sont succédées et complexifiées au cours des dernières décennies afin de mieux expliquer les observations de plus en plus variées et précises que les avancées techniques ont permis. Les modèles, étudiés notamment grâce à des simulations faites sur ordinateurs, ont évolué. Ils passent à des structures complexes où les nucléons forment des agrégats stables au sein du noyau ou, dans d’autres cas, constituent un halo diffus entourant un centre plus dense. C’est toute une nouvelle physique nucléaire qu’il faut réinventer.


SYNTHÉTISER ET ÉTUDIER DE NOUVEAUX NOYAUX
Depuis la découverte de la radioactivité artificielle en 1933 par Frédéric Joliot et Irène Joliot-Curie, de nombreux noyaux atomiques ont été synthétisés. Si les centres de Doubna (en Russie), de Darmstatd (en Allemagne) ou de Berkeley (aux USA) synthétisent des noyaux de numéro atomique élevé, le Grand accélérateur national d’ions lourds (Ganil) du CEA/CNRS installé à Caen permet l’étude de la stabilité de ceux qui y sont produits, de façon à mieux comprendre comment l’interaction nucléaire forte maintient les nucléons entre eux.
Deux axes de recherche sont développés :
*         l’étude des noyaux stables dans leurs états plus ou moins excités
*         la production et l’étude de noyaux exotiques.

Le Ganil a commencé à fonctionner en 1983 et son extension, Spiral2, démarrée en février 2012, sera bientôt opérationnelle.

SPIRAL (Système de productions d’ions radioactifs en ligne)
SPIRAL est un équipement, implanté depuis 2001 au Ganil, permettant de produire et d’accélérer des noyaux exotiques. Ceux-ci se caractérisent par un fort déséquilibre entre leur nombre de protons et de neutrons et un temps d’existence extrêmement bref avant de se désintégrer. Leur étude est essentielle dans de nombreux domaines de la physique nucléaire, mais aussi de l’astrophysique, notamment pour comprendre la formation des noyaux des atomes au sein des étoiles et des supernovae. Si les physiciens savent synthétiser des noyaux exotiques en laboratoire, l’installation Spiral leur permet d’en produire en grande quantité, de les accélérer, d’observer leurs collisions avec d’autres noyaux, et ainsi de connaître leur structure.

Pour aller plus loin, l’installation Spiral2 permettra de produire des noyaux exotiques à un taux mille fois plus élevé que ce qui se fait jusqu’à présent. L’objectif sera toujours de produire ces noyaux de synthèse pour découvrir leur nature et comprendre

LA MATIÈRE NUCLÉAIRE
L’interaction nucléaire forte permet de former des noyaux atomiques dont le nombre de masse (nombre de nucléons) ne dépasse pas 300. Mais il est possible de contraindre les nucléons à former temporairement une assemblée plus nombreuse en accélérant des ions lourds (comme des ions de plomb) avec des énergies colossales (de plusieurs TeV).
Pour en savoir plus :
*         Le dossier "LHC : découvrir la structure et les constituants ultimes de la matière"

Focus sur le boson de Higgs

Les noyaux atomiques s’entrechoquent de face. Leurs nucléons se mélangent pendant la durée du choc et les conditions qui règnent au sein du plasma de quarks et de gluons ressemblent aux conditions de température et de pression qui étaient celles de l’Univers à ses premiers instants (scénario du Big Bang). Le plasma ainsi formé n’est pas stable et la plus grande partie de l’énergie apportée pour le constituer se transforme en un très grand nombre de particules de toutes sortes qui sont détectées instantanément. Des collisions proton-plomb permettent de distinguer ce qui se passe dans un plasma froid par rapport à un plasma chaud (plomb-plomb). L’intérêt de ces collisions est de tester les mécanismes de nucléosynthèse primordiale en confrontant les mesures actuelles avec le résultat de ce qui a eu lieu il y a 13,7 milliards d’années. C’est ce qui a été réalisé au LHC et sera poursuivi après sa remise en marche prévue en 2015.

Le boson de Higgs


Au Large Hadron Collider (LHC) ce sont parfois des protons, noyaux d’hydrogène, qui circulent en paquets très denses, 100 milliards de protons par paquet ! Le collisionneur est un anneau de 27 km de circonférence, situé à 100 m sous terre à la frontière franco-suisse. Ces paquets de protons font 11 000 tours par seconde et se rencontrent en quatre points de collisions toutes les 25 ns. L’énergie disponible alors, de 7 à 8 TeV, permet de remonter aux conditions de température et de pression régnant dans l’Univers juste après le Big Bang. Sur les 6 millions de milliards de collisions proton-proton produites dans le LHC de 2010 à 2012, les expériences Atlas et CMS ont chacune enregistré environ 5 milliards de collisions intéressantes. Grâce à cette accumulation de données, des événements isolés s’ajoutent les uns aux autres et le signal émerge du bruit de fond. En juillet 2012, 400 collisions environ ont permis de mettre en évidence des événements signalant la particule qui ressemble au boson de Higgs. Celui-ci, prédit dès 1964 par les théoriciens François Englert, Robert Brout et Peter Higgs, leur ont valu de recevoir le prix Nobel de physique 2013.

 

   DOCUMENT     cea         LIEN

 
 
 
 

Les déchets radioactifs

 


 

 

 

 

 

Les déchets radioactifs

On appelle déchet radioactif toute matière radioactive qui ne peut plus être ni recyclée ni réutilisée. Du fait de leur radiotoxicité, potentiellement dangereuse pour l’homme et pour l’environnement, les déchets radioactifs sont gérés de façon spécifique. Cette gestion est encadrée par la Loi. 90 % des déchets radioactifs (en volume), produits en France, disposent déjà d’une filière de gestion en stockage ultime. Les déchets de haute activité et de moyenne activité à vie longue (HA et MA-VL) n’ont pas encore de filières définitives de stockage. Ils sont conditionnés et entreposés par leurs producteurs, dans l’attente d’un site de stockage définitif.
DÉCHETS RADIOACTIFS : DÉFINITION

Les déchets radioactifs sont d’une grande diversité : éléments issus des combustibles usés des centrales nucléaires et des activités Défense pour la force de dissuasion, matériaux issus du démantèlement d'installations nucléaires, éléments radioactifs à usage industriel (techniques de contrôle de fabrication, stérilisation) ou médical (imagerie, radiothérapie), éléments issus de la recherche nucléaire…
En France, les déchets radioactifs sont classés selon deux critères :
*         Leur durée de vie, calculée en fonction de la « période radioactive » des radioéléments contenus : la période est le temps au bout duquel la quantité d’un même radionucléide est divisée par deux. Elle varie, selon les radionucléides, de quelques jours à plusieurs milliers d’années. On parle de déchets à vie courte (VC), quand la période est inférieure à 31 ans, et de déchets à vie longue (VL) au-delà.       
*         Leur niveau de radioactivité, exprimé en becquerels : cela correspond au nombre de désintégrations d’atomes par seconde. On parle de déchets de très faible activité (TFA), faible activité (FA), moyenne activité (MA) ou haute activité (HA).


Les différentes catégories de déchets radioactifs
En fonction de ces deux critères, il existe 5 catégories de déchets radioactifs :
*         Les déchets de très faible activité (TFA) issus principalement du démantèlement des installations nucléaires : gravats, bétons, ferrailles. Leur radioactivité décroit de manière significative en une dizaine d'années. Ils représentent 27% du volume des déchets radioactifs produits en France et contiennent moins de 0,01% de la radioactivité de l’ensemble des déchets.

*         Les déchets de faible et moyenne activité à vie courte (FMA-VC) : il s'agit essentiellement des déchets liés à la maintenance des installations nucléaires. Une partie provient aussi des hôpitaux ou des laboratoires de recherche. Ce sont des objets contaminés comme des gants, des filtres, des résines… Leur radioactivité décroit de manière significative en 300 ans environ. Les déchets FMA-VC constituent 63% du volume des déchets radioactifs, pour 0,02% de leur radioactivité.       
*         Les déchets de faible activité à vie longue (FA-VL) : cette catégorie couvre les déchets radifères (contenant du radium) provenant de minéraux utilisés dans certaines industries et les déchets de graphite issus du démantèlement des réacteurs nucléaires de 1ère génération. Les déchets FA-VL constituent 7% du volume des déchets radioactifs, pour 0,01% de leur radioactivité. 

*         Les déchets de moyenne activité à vie longue (MA-VL), issus du traitement des combustibles usés des centrales nucléaires : structures qui entourent les combustibles usés (coques et embouts) et effluents liquides issus du procédé de retraitement. Les déchets MA-VL constituent 3% du volume des déchets radioactifs, pour 4% de leur radioactivité.

*         Les déchets de haute activité à vie longue (HA-VL) correspondent aux déchets issus du traitement des combustibles nucléaires usés : ils contiennent les « produits de fission » et les « actinides mineurs » formés par les réactions nucléaires dans le combustible lors de son séjour en réacteur. Leur durée de vie peut s'étendre sur plusieurs milliers, voire plusieurs millions d'années. Ils ne représentent que 0,2% du volume des déchets radioactifs mais 96% de la radioactivité totale des déchets radioactifs en France.


ENJEU :
ASSURER UNE GESTION DURABLE
DES DÉCHETS RADIOACTIFS
Les déchets radioactifs contiennent des radionucléides potentiellement dangereux pour l’homme et pour l’environnement. Ils doivent donc être gérés de manière spécifique tout au long de leur durée de nuisance potentielle : inventaire et collecte des déchets radioactifs, conditionnement adaptés, solutions de stockage sûres et pérennes.
Juridiquement, les grands principes de gestion des déchets radioactifs sont indiqués par la loi du 28 juin 2006 relative à la gestion durable des matières et déchets radioactifs.
Ces principes sont les suivants :
*         protection de la santé des personnes et de l’environnement ;
*         réduction de la quantité et de la nocivité des déchets radioactifs ;
*         prévention ou limitation des charges supportées par les générations futures ;
*         principe pollueur-payeur qui prévaut en droit de l’environnement.

L'Agence nationale pour la gestion des déchets radioactifs (Andra) est l’organisme chargé de trouver, mettre en œuvre et garantir des solutions de gestion sûres pour l’ensemble des déchets radioactifs français.
Renouvelé tous les 3 ans, le plan national pour la gestion des matières et des déchets radioactifs (PNGMDR) constitue l’outil privilégié pour mettre en œuvre ces principes. Par ailleurs, tous les 3 ans, un inventaire complet des matières et des déchets radioactifs est réalisé et publié par l’Andra.
Aujourd’hui, 90 % des déchets nucléaires (en volume) produits en France disposent déjà d’une filière de gestion en stockage ultime. L’Andra dispose de centres dédiés de stockage et peut ainsi les gérer de façon industrielle : les déchets de très faible activité (TFA) sont stockés sur le site de Morvilliers (Aube), les déchets de faible et moyenne activité à vie courte (FMA-VC) sont stockés en surface sur le centre de Soulaines (dans l’Aube également).
Pour les déchets FA-VL, une démarche de recherche de site de stockage est conduite par l’Andra depuis 2008. En attendant la création d'un centre pouvant les accueillir, les déchets FA-VL sont entreposés dans des installations spécifiques, le plus souvent sur le lieu même où ils sont produits.

Enfin, les déchets de haute activité (HA) et de moyenne activité à vie longue (MA-VL) n’ont pas non plus de filière définitive de stockage. Dans l’attente d’un site de stockage définitif, ils sont conditionnés et entreposés dans des installations ad hoc par leurs producteurs, principalement à La Hague (Manche), Marcoule (Gard), Cadarache (Bouches-du-Rhône) et Valduc (Côte-d’Or). À terme, ils devraient être stockés sous terre, dans des formations géologiques de grande profondeur. C’est le projet Cigéo (Centre industriel de stockage géologique pour les déchets) de l’Andra, qui fait l’objet d’un débat public durant l’année 2013.

LES RECHERCHES SCIENTIFIQUES
SUR LES DÉCHETS RADIOACTIFS
La gestion des déchets radioactifs s’inscrit dans une démarche de progrès continu. Elle fait donc l’objet de programmes de R&D importants depuis la fin des années 1950, le but étant de minimiser la quantité de déchets, de concentrer la radioactivité et de garantir le confinement dans des conditions sûres.
Les déchets HA et MA-VL font l’objet de programmes de recherches particuliers dont les grandes orientations sont fixées par la loi du 28 juin 2006.
Cette loi définit trois axes de recherche et d’études complémentaires :
*         La séparation/transmutation des actinides mineurs, sous la responsabilité du CEA : il s’agit d’isoler puis de transformer les éléments les plus radiotoxiques en les « transmutant » en d’autres éléments moins radiotoxiques et à vie plus courte. Ces recherches sont menées par le CEA en lien avec celles menées sur les réacteurs nucléaires à neutrons rapides de 4ème génération, capables de réaliser la transmutation. Le CEA a coordonné les travaux de recherche menés par les établissements publics (Andra, CEA, CNRS, Universités) et leurs partenaires industriels (Areva, EDF) afin d’évaluer les perspectives industrielles des technologies étudiées. Un dossier sur le résultat de ces travaux a été remis au gouvernement fin 2012.


Le stockage en formation géologique profonde (projet Cigéo en Meuse / Haute-Marne), sous la responsabilité de l’Andra : le stockage des déchets de haute et moyenne activité à vie longue en formation géologique profonde est retenu par la loi comme solution de référence. Cet axe de recherche correspond au projet Cigéo de l’Andra. Dans le domaine de la R&D, le CEA y contribue avec des études notamment sur le comportement à long terme des colis de déchets en milieu géologique profond et sur la migration des radionucléides dans les couches géologiques.

Le 3ème axe d’étude porte sur l’entreposage des déchets radioactifs HA et MA-VL en attente d’une solution de gestion définitive. Il est aussi confié à l’Andra. Le CEA a contribué à des études de conception de ces installations d’entreposage.

 

  DOCUMENT     cea         LIEN

 
 
 
 

Demain, l'hydrogène au quotidien ?

 

 

 

 

 

 

 

L'HYDROGÈNE
Demain, l'hydrogène au quotidien ?


Des normes de sécurité pour la production, le stockage, le transport et les utilisations de l'hydrogène sont en cours d'élaboration.

Publié le 1 décembre 2013
       
La production d’électricité est possible en tout lieu et à tout moment grâce à la combinaison d’une pile à combustible et d’une réserve de dihydrogène.

UNE MISE EN PLACE PROGRESSIVE
Piles à combustible, réservoirs de stockage, véhicules, stations d’approvisionnement : de nombreux prototypes existent déjà. Les défis techniques, qui accompagnent l’usage du dihydrogène comme vecteur d’énergie, rendent nécessairement progressive son émergence dans nos vies quotidiennes. Pourtant, les modes de productions se diversifient, des solutions de transport et de stockage prennent forme et des utilisations variées voient actuellement le jour. En réponse à l’intermittence des énergies renouvelables, il équipera dans un avenir proche des maisons autonomes ou des villages isolés : si trop d’énergie électrique est produite grâce aux éoliennes ou aux capteurs solaires, le dihydrogène produit par électrolyse de l’eau la stocke sous forme chimique, pour la restituer grâce à une pile à combustible.
Source de courant privilégié, le dihydrogène peut désormais assurer la propulsion de véhicules électriques qui circuleront demain, dès lors qu’une distribution aussi performante que celle des hydrocarbures aura été déployée. Déjà des flottes de bus ou de véhicules utilitaires peuvent circuler autour d’un point unique de ravitaillement.
 

LE DIHYDROGÈNE EN TOUTE SÉCURITÉ
Très inflammable et nécessitant des conditions de stockage complexes (très basses températures ou très hautes pressions), le dihydrogène à usage énergétique est un combustible aussi dangereux que le GPL et nécessite le même type de précautions.
Jusqu’à ces dernières années, ce gaz n’était massivement utilisé que par l’industrie chimique. Son emploi futur en tant que vecteur d’énergie, ainsi que l’apparition de nouvelles techniques de production, de transport, de stockage et d’utilisation rendent nécessaires l’édiction de réglementations adaptées ainsi que la rédaction de normes spécifiant les caractéristiques techniques assurant la sécurité des usagers.

À l’échelle mondiale, le comité technique ISO1 TC 197 (auquel l’Afnor2 participe), créé en 1990, rédige des normes relatives aux différentes étapes d’utilisation du dihydrogène. Le comité technique IEC3 TC 105 s’occupe lui plus particulièrement des normes associées aux piles à combustible. Le réseau HYSAFE4 (auquel le CEA participe) contribue à l’élaboration de normes, de règlements et de guides de bonnes pratiques au niveau européen. Des directives européennes spécifiques aux applications stationnaires, mobiles et nomades sont régulièrement transposées en droit français.
Cet effort réglementaire et normatif s’appuie sur les travaux des principaux centres de recherche tels que le CEA qui réalise systématiquement des tests sur tous les dispositifs qu’il projette de développer ; comme par exemple des tests d’éclatement, de chute et de perforation sur les réservoirs haute pression.

 

  DOCUMENT     cea         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon