ecole de musique piano
     
menu
 
 
 
 
 
 

Les dendrimères : un remède aux maladies inflammatoires chroniques ?

 

 

 

 

 

 

 

Les dendrimères : un remède aux maladies inflammatoires chroniques ?

COMMUNIQUÉ | 05 MAI 2011 - 14H41 | PAR INSERM (SALLE DE PRESSE)

GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE

Vous avez dit dendrimères ? Derrière ce nom se cachent des molécules de synthèse à la forme d’un arbre dont les multiples propriétés sont étudiées par les chercheurs du monde entier. Les chercheurs de l’Inserm, de l’Université Toulouse III – Paul Sabatier et du CNRS au sein du Centre de Physiopathologie de Toulouse Purpan et du Laboratoire de Chimie de Coordination ont démontré les effets d’une nouvelle famille de dendrimères sur le système immunitaire. L’injection intraveineuse de dendrimères supprime l’inflammation au niveau de l’articulation et empêche les phénomènes de destruction du cartilage et d’érosion osseuse dans deux modèles animaux qui miment la polyarthrite rhumatoïde humaine. Ce travail publié dans Science Translational Medicine est une première démonstration de l’efficacité de ce type de molécules et ouvre des perspectives dans le traitement de la polyarthrite rhumatoïde.

Schéma d’un dendrimère – © Anne-Marie Caminade, Laboratoire de Chimie de Coordination
Les dendrimères sont des molécules de synthèse dont la forme ressemble à celle d’un arbre. Grâce à leurs multiples terminaisons, ces arbres moléculaires peuvent prétendre à de multiples applications. Les chercheurs les synthétisent et les étudient depuis quelques années pour leur usage potentiel en imagerie médicale, en ingénierie tissulaire, ou encore en nanomédecine.

Des premières études in vitro
Les chercheurs ont récemment montré in vitro que certains dendrimères peuvent interférer avec les cellules du système immunitaire au bénéfice d’une action anti-inflammatoire. En bref, ces molécules interagissent avec des cellules impliquées dans les phénomènes d’inflammation : les monocytes-macrophages, qui ont la particularité de se différencier en ostéoclastes, cellules géantes qui dégradent l’os.
Sur la base de ces premières recherches, les scientifiques ont exploré le potentiel thérapeutique de cette nouvelle famille de dendrimères dans le traitement de maladies inflammatoires chroniques telle que la polyarthrite rhumatoïde. Cette maladie auto-immune qui affecte environ 1% de la population se caractérise par l’inflammation de l’ensemble des tissus articulaires (cartilage mais aussi os et membrane synoviale) et conduit à des déformations articulaires invalidantes.

Puis chez l’animal
Dans ce travail, les chercheurs ont utilisé deux modèles animaux qui miment les effets de la polyarthrite rhumatoïde humaine.
Dans un de ces deux modèles de souris, la maladie se développe spontanément après 4 semaines de vie. Dans l’autre, l’arthrite est induite par injection d’autoanticorps. Les symptômes sont présents chez 100% des animaux. Pour essayer de contrecarrer les effets de la maladie, les chercheurs ont injecté une fois par semaine, ces fameux dendrimères par voie intraveineuse. “Alors que chez les animaux non traités, le cartilage est complètement détruit, chez les souris traitées, le cartilage est préservé et les articulations sont intactes et parfaitement fonctionnelles.” déclare Rémy Poupot, l’un des chercheurs auteur de ce travail. “Il est important également de souligner que les doses administrées (de 1 à 10 mg/kg) sont compatibles avec les doses thérapeutiques chez l’homme.”
Pour élucider le(s) mécanisme(s) mis en jeu, les scientifiques ont quantifié le niveau de cytokine dans le sérum de tous les animaux. Les cytokines sont les substances secrétées par l’organisme. Certaines d’entre elles, les cytokines pro-inflammatoires, ont pour fonction de fortement stimuler la croissance et la prolifération des cellules du système immunitaire. Chez les animaux traités, le taux de cytokine redevient similaire à celui des animaux sains contrairement aux animaux malades non traités chez lesquels ce taux est beaucoup plus élevé.

Selon Rémy Poupot : les dendrimères moduleraient ainsi les effets néfastes d’une activité inflammatoire trop importante qui est à l’origine des maladies inflammatoires chroniques.

Et chez l’homme
A l’heure actuelle, le traitement des maladies inflammatoires chroniques fait souvent appel aux anticorps monoclonaux thérapeutiques, notamment dans la polyarthrite rhumatoïde. Malheureusement, un tiers des patients ne répond pas à ces traitements qui, de plus, sont extrêmement coûteux (environ 15000 € / patient / an). En parallèle des recherches menées chez l’animal, les chercheurs ont d’ores et déjà testé, in vitro, l’efficacité thérapeutique des dendrimères sur des monocytes humains et des membranes synoviales de patients atteints de polyarthrite rhumatoïde. Dans ces dernières expériences, l’activité anti-ostéoclastique (qui bloque la formation des cellules de dégradation de l’os) est également démontrée. Les dendrimères constituent donc une piste prometteuse pour le développement de nouvelles thérapeutiques dans le traitement des maladies inflammatoires chroniques.

 

  DOCUMENT      inserm     LIEN 

 
 
 
 

Anne Eichmann : apprendre à manipuler la barrière endothéliale pour soigner

 



 

 

 

 

 

Anne Eichmann : apprendre à manipuler la barrière endothéliale pour soigner

Dans notre corps, un réseau des cellules endothéliales
cellules endothéliales
Cellules qui tapissent la face interne des vaisseaux sanguins.
sépare les liquides circulants, c’est-à-dire le sang et la lymphe, du milieu intérieur des tissus et organes. Cependant, le fonctionnement de cette barrière endothéliale diffère d’un organe à l’autre. Un pied aux Etats-Unis, l’autre en France, Anne Eichmann est passionnée par cette versatilité. Elle vient d’obtenir un financement du Conseil européen de la recherche (ERC Advanced Grant) afin d’en identifier les régulateurs clés : ces derniers constitueront autant de cibles thérapeutiques potentielles pour traiter différentes pathologies.

Comment avez-vous commencé à travailler sur les cellules endothéliales ?
J’avais engagé des études vétérinaires à Berlin, mais j’ai décidé de bifurquer vers la biologie humaine. Pour cela, j’ai commencé un nouveau cursus en Israël, à l’Institut Weizmann. J'y ai découvert le travail en laboratoire et ma vocation pour la recherche s’est éveillée. J’ai ensuite rejoint la France pour préparer ma thèse de doctorat à l'Institut d’embryologie du Collège de France, dirigée par mon mentor Nicole Le Douarin. J'y suis finalement restée plus de 10 ans ! C’est au Collège de France que j’ai dirigé ma première équipe et que j'ai commencé à travailler sur les cellules endothéliales qui sont aujourd’hui au cœur de mon travail. La biologie vasculaire est un domaine fascinant. Le tissu endothélial est très étendu à l’échelle de l’organisme : sa surface chez un humain adulte peut couvrir celle d’un terrain de tennis ! Par ailleurs, les cellules endothéliales jouent un rôle central dans les échanges de gaz, de médiateurs immunitaires ou de nutriments
nutriments
Substance alimentaire qui n’a pas besoin de subir de transformations digestives pour être assimilée par l’organisme.
entre le sang ou la lymphe et les organes.

Il existerait plus de 80 maladies touchant les cellules endothéliales. D'où vient cette diversité ?
Les cellules endothéliales forment une barrière entre l'intérieur des vaisseaux sanguins ou lymphatiques, et les tissus qu’ils traversent. Or, si la constitution du tissu endothélial est globalement identique où qu’il se situe dans l’organisme, son fonctionnement peut être très disparate, variant d’une très grande porosité à une très grande étanchéité. Devant cette diversité, on comprend que l’étiologie des dysfonctionnements le touchant soit également diversifiée : il peut s’agir d’infections bactériennes ou virales, d’allergies (respiratoires notamment), de maladies inflammatoires (psoriasis, maladie de Crohn…), de maladies neurodégénératives ou de cancers. L’enjeu est vaste car, malgré l’importance de ce tissu dans l’organisme, son fonctionnement est encore mal connu. J’ambitionne de mieux comprendre les mécanismes cellulaires et facteurs moléculaires permettant au tissu endothélial d’adopter une telle diversité de comportement. Je souhaite aussi identifier les mécanismes physiopathologiques associés, avec l’objectif de définir de nouvelles approches thérapeutiques à plus long terme.

Quelles pistes de recherche allez-vous développer dans le cadre du financement ERC que vous avez obtenu ?
Nos précédents travaux ont notamment révélé le rôle d'un facteur de croissance
facteur de croissance
Molécule qui favorise ou inhibe la multiplication des cellules.
, le VEGF-A, dans la néo-vascularisation et l’imperméabilité des vaisseaux lymphatiques de l’intestin. L’action du VEGF-A sur les vaisseaux lymphatiques intestinaux jouerait ainsi un rôle non négligeable dans l’obésité. Plus récemment, nous avons réussi à modifier l’étanchéité naturelle de la barrière hémato-encéphalique
barrière hémato-encéphalique
Barrière physiologique entre la circulation sanguine et le système nerveux central.
(BHE), en modifiant l’expression de gènes codant pour des protéines transmembranaires endothéliales contribuant aux jonctions intercellulaires serrées (tight-junctions). Cette découverte nous permet d’envisager de cibler ces protéines avec des anticorps
anticorps
Protéine du système immunitaire, capable de reconnaître une autre molécule afin de faciliter son élimination.
monoclonaux spécifiques, afin de bloquer leur fonctionnement et de permettre le passage transitoire de médicaments vers le tissu du système nerveux central
système nerveux central
Composé du cerveau et de la moelle épinière.
. Enfin, nous avons décrit certains mécanismes impliqués dans la porosité des vaisseaux lymphatiques et l’œdème chronique.
Avec le projet Breaking Barriers financé par l'ERC, nous voulons acquérir une meilleure compréhension des mécanismes impliqués dans la coordination de la fonction barrière de l’endothélium et trouver comment les manipuler à des fins thérapeutiques. Ces travaux seront conduits à travers les deux exemples extrêmes de la BHE et des vaisseaux lymphatiques, dans lesquels les jonctions entre cellules endothéliales sont très serrées ou très ouvertes. Le financement de l'ERC, d’un total de 2,5 millions d’euros sur 5 ans, va nous permettre de mener une recherche conceptuellement ambitieuse avec des approches de haute technologie. Il nous permet d’être encore plus compétitifs et capables de découvertes à potentiel translationnel et thérapeutique.
Anne Eichmann est responsable de l'équipe Vascular development and disease, au Centre de recherche cardiovasculaire (PARCC - unité 970 Inserm/Université Paris Descartes), Paris.

 

 DOCUMENT      inserm     LIEN 

 
 
 
 

Syndromes d’hypercroissance : amélioration remarquable de l’état de santé de 19 patients

 

   

 

 

 

 

 

Syndromes d’hypercroissance : amélioration remarquable de l’état de santé de 19 patients

COMMUNIQUÉ | 13 JUIN 2018 - 19H00 | PAR INSERM (SALLE DE PRESSE)

PHYSIOPATHOLOGIE, MÉTABOLISME, NUTRITION

Première médicale : Syndrome de CLOVES et syndromes d’hypercroissance : amélioration remarquable de l’état de santé de 19 patients enfants et adultes grâce à une nouvelle stratégie thérapeutique
Le Dr Guillaume Canaud de l’hôpital Necker-Enfants malades – AP-HP, l’Université Paris Descartes, l’Inserm (INEM l’Institut Necker Enfants Malades – Centre de médecine moléculaire) et son équipe viennent de démontrer l’efficacité d’un nouveau médicament, un inhibiteur spécifique appelé BYL719, dans une cohorte de 19 patients suivis à l’hôpital Necker-Enfants Malades – AP-HP et souffrant du syndrome de CLOVES (Congenital Lipomatous Overgrowth, Vascular Malformation, Epidermal Nævi) ou de troubles apparentés. Ce médicament est actuellement en cours d’essai thérapeutique en cancérologie (phase I/II). Aucun effet secondaire significatif n’a été constaté 18 mois après le début du traitement. Cette étude, publiée dans la revue Nature, représente un exemple de médecine de précision et démontre l’intérêt majeur de cette stratégie thérapeutique pour ces patients qui voient leur état de santé et leur qualité de vie s’améliorer de manière significative.

Les patients souffrant du syndrome de CLOVES (Congenital Lipomatous Overgrowth, Vascular Malformation, Epidermal Nævi) ou de troubles apparentés présentent des déformations majeures et des tuméfactions vasculaires dues à des mutations d’un gène, appelé PIK3CA. Ce gène régule la prolifération et la croissance des cellules. Lorsqu’il est trop activé il est responsable de croissance excessive des parties du corps touchées par la mutation. Ainsi la présentation clinique des patients est très variable en fonction du nombre de tissus affectés pouvant aller d’une macrodactylie (gros doigt isolé) à des formes très sévères touchant l’ensemble du corps telles que le syndrome de CLOVES.

Au cours des formes les plus graves, il existe des excroissances de tissu graisseux, des malformations vasculaires, une scoliose, des manifestations touchant le squelette comme un élargissement majeur des os ou encore des déformations d’organes tel que le cerveau ou les reins. Jusqu’à présent aucun traitement curatif n’était disponible pour ces patients dont le pronostic pouvait être engagé à court ou moyen terme et pour lesquels, les seules options thérapeutiques consistaient en des traitements symptomatiques, et pour les cas les plus graves, à subir des embolisations ou des chirurgies mutilantes pour préserver les organes ou les membres sains. Enfin, il est important de noter que ces syndromes sont fréquemment associés à des douleurs chroniques et ont un retentissement majeur sur la qualité de vie des patients et leur vie sociale.

Le gène PIK3CA est fréquemment muté dans un certain nombre de cancers (sein et colon notamment) et constitue une cible thérapeutique pour l’industrie pharmaceutique. Les mutations de PIK3CA dans les cancers sont les mêmes que celles retrouvées chez les patients atteints de syndrome de CLOVES et troubles apparentés.

Fin 2015, le Dr Guillaume Canaud, spécialiste de cette voie moléculaire, a été confronté à un patient de 29 ans porteur d’un syndrome de CLOVES très évolué avec un pronostic engagé pour lequel plus aucune chirurgie ou embolisation radiologique ne pouvait être proposée. le Dr Guillaume Canaud s’est alors rapproché du laboratoire Novartis qui travaille au développement en cancérologie d’un inhibiteur spécifique du gène PIK3CA appelé BYL719. Ce médicament est actuellement en cours d’essai thérapeutique en oncologie (phase I/II).

En janvier 2016, après avoir obtenu l’autorisation de l’ANSM d’utiliser ce médicament expérimental, le Dr Guillaume Canaud a démarré le traitement chez ce premier patient. Très rapidement, un effet positif a été observé sur l’ensemble des symptômes. Il a notamment été constaté une diminution importante des masses vasculaires et des excroissances dont le patient souffrait mais aussi une amélioration majeure de sa qualité de vie. Dix-huit mois plus tard, ce premier patient n’a présenté qu’un seul effet secondaire, une hyperglycémie, bien contrôlée par un simple régime alimentaire.

Université Paris Descartes

En parallèle, afin de mieux comprendre cette pathologie et le mode de fonctionnement du médicament, le Dr Canaud a créé avec son équipe de recherche au sein de l’INEM-Unité Inserm U1151), le premier modèle de souris (modèle murin) au monde regroupant l’ensemble des lésions dont souffrent les patients. Les souris ont été traitées avec le médicament BYL719 et là encore une amélioration majeure et rapide de leur état a pu être constatée.
Fort de ces résultats, le Dr Canaud a rapidement constitué en juin 2016, un groupe de travail réunissant une dizaine de spécialités médicales et chirurgicales prenant en charge les patients atteints de syndrome de CLOVES ou apparentés au sein de l’hôpital Necker – Enfants malades – AP-HP. L’idée de ce groupe était de mieux prendre en charge ces patients.
Au cours de l’été 2016, une enfant de 9 ans atteinte d’une forme sévère du syndrome de CLOVES avec une tuméfaction vasculaire menaçant sa vie et pour laquelle un acte chirurgical ou d’embolisation n’était pas possible, a bénéficié de ce traitement expérimental. De nouveau, le BYL719 a eu un effet spectaculaire sur l’ensemble des symptômes, déformations et sur la tuméfaction vasculaire. Il est important de noter qu’aucun effet secondaire n’a été constaté chez ce premier enfant, le premier dans le monde à recevoir ce traitement, et que sa croissance n’a pas été affectée au cours des 12 mois du suivi.
En février 2017, 17 nouveaux patients (14 enfants et 3 adultes âgés de 4 ans à 50 ans) suivis à l’hôpital, et pour lesquels le pronostic était engagé ou une chirurgie mutilante programmée, ont bénéficié, grâce à une autorisation de l’ANSM, du traitement par BYL719 fourni par Novartis. Dès les premiers jours après initiation du traitement, tous les patients ont présenté une amélioration spectaculaire de leur état général et notamment une réduction rapide de la taille des tumeurs vasculaires, des dilatations veineuses, de l’aspect cutané ou du volume anormal des membres ainsi qu’une diminution de la fatigue et une meilleure résistance à l’effort. Par ailleurs, tous les patients ont connu une amélioration de leur scoliose. Ils ont ainsi pu selon les cas reprendre une activité physique, arrêter les traitements à base de morphine, retourner à l’école, …
Après six mois de traitement, ces 17 patients sont encore en vie et aucune intervention chirurgicale n’a été effectuée. Des effets secondaires mineurs, tels que des aphtes, ont été observés chez trois d’entre eux.
Les 19 patients continuent de recevoir quotidiennement le BYL719.

Patients à j 0 et à j + 180 – © Dr Canaud, AP-HP
Cette étude, dont le protocole a été approuvé par l’Agence Nationale de Sécurité du Médicament et des Produits de Santé (ANSM), démontre l’efficacité de cette approche thérapeutique.
Pour le Dr Canaud, « ce traitement va radicalement changer le devenir des patients porteurs de syndromes d’hypercroissance associés à une mutation de PIK3CA. Le médicament a permis d’obtenir des résultats dépassant nos espérances avec des régressions de malformations, pourtant présentes depuis de nombreuses années, mais aussi une amélioration de la qualité de vie des patients et de leur entourage. Le BYL719 représente ainsi un formidable espoir thérapeutique même pour des formes très sévères. Enfin, notre étude démontre l’intérêt de mettre au point des traitements ciblés dans les maladies génétiques pour développer une médecine dite de précision, mais également la nécessité d’une très forte interaction entre cliniciens et chercheurs pour faire avancer la connaissance et le développement de nouveaux médicaments. »
Ces travaux ont fait l’objet du dépôt d’une demande de brevet par Inserm Transfert au nom de l’AP-HP, de l’Université Paris Descartes et de l’Inserm.

 

   DOCUMENT      inserm     LIEN 

 
 
 
 

Quels antibactériens pour après-demain?

 

 

 

 

 

 

 

Quels antibactériens pour après-demain?
mensuel 314
daté novembre 1998 -

Les chercheurs de l'industrie pharmaceutique retournent à leurs paillasses. Leur travail est facilité par l'émergence de nouveaux outils comme la chimie combinatoire, le criblage à haut débit, la bioinformatique et la robotique. Mais comment trouver des antibiotiques vraiment innovants ? En cherchant des molécules qui s'attaquent à des processus récemment explorés par la microbiologie moléculaire: mécanismes de résistance, réplication de l'ADN et division bactérienne, voies de communications intercellulaires... En sachant également quels sont les gènes indispensables à la survie ou à l'infectiosité des micro-organismes. Ce que devrait, à terme, révéler le séquençage des génomes et l'étude des protéines bactériennes.

Dans les années 1970, l'industrie pharmaceutique pensait son arsenal thérapeutique suffisant pour combattre les maladies infectieuses. Cantonnés au milieu hospitalier, les phénomènes de résistance microbienne semblaient contrôlés. Les principales firmes, chacune spécialisée dans une ou deux familles d'antibiotiques, ont exploité leur expertise chimique. Elles ont perfectionné leurs molécules, augmentant leur tolérance, élargissant leur spectre d'activité... Mais nombre d'entre elles ont tourné leurs efforts de recherche vers d'autres médicaments antimicrobiens, anti-viraux ou anti-fongiques, et certaines se sont même totalement détournées de ce domaine. Les besoins du marché leur semblaient comblés.
Ce point de vue est démenti depuis la fin des années 1980, avec l'apparition des multirésistances, et celle des résistances en médecine de ville. L'industrie pharmaceutique se tourne donc à nouveau vers la recherche. Son but est, bien sûr, de développer des antibiotiques et vaccins innovants mais aussi, à plus long terme, des classes d'agents antibactériens complètement nouvelles permettant de contourner les phénomènes de résistance. En effet, au lieu de tuer les bactéries comme le font les antibiotiques, ces nouveaux médicaments devraient atténuer le pouvoir pathogène des bactéries en ciblant leurs facteurs de virulence* ou en jouant sur les molécules de communication intercellulaire.
Lors du processus de découverte d'un médicament, chimistes et biologistes s'attachent à identifier ce que l'on appelle des « pistes chimiques ", des composés sélectionnés selon un premier crible, c'est-à-dire un test permettant de repérer les molécules susceptibles d'avoir l'activité recherchée. Ils valident ensuite ces molécules avec un deuxième criblage, fondé sur un test plus spécifique. C'est ainsi qu'ils repèrent les " têtes de série », dont ils étudient la relation structure-activité pour ensuite affiner leur activité pharmacologique.

Les chercheurs puisent les composés testés dans ce qu'ils appellent leur trésor, des banques de molécules ou pharmacothèques, aujourd'hui constituées le plus souvent par chimie combinatoire voir l'encadré : " La chimie combinatoire, source de diversité moléculaire ". De quels types de banques de molécules disposent-ils? Ils peuvent, dans un premier temps, faire appel à des banques d'aide à la recherche, dites exploratoires. Elles sont créées sur écran d'ordinateur à partir de banques virtuelles, générées par modélisation moléculaire. Plus rationnelles, les pharmacothèques dirigées comportent des molécules dont les caractéristiques sont déduites de la connaissance du site de liaison de la cible bactérienne. Enfin, les banques d'optimisation contiennent des molécules qui dérivent déjà d'une première piste chimique. La modélisation moléculaire, y compris les études de structure tridimensionnelle, facilite la conception rationnelle de ces pharmacothèques.
Mais elles n'ont d'intérêt que si l'on dispose conjointement d'outils performants de criblage, basés sur des cibles bactériennes originales: test enzymatique in vitro, tests sur bactérie entière ou recombinante... Ces outils de criblage, dits à haut flux ou à haut débit, sont issus des progrès de la robotique. Ce sont des systèmes capables de réaliser des tâches séquentielles indépendantes telles que dilution, pipettage et répartition de composés dans des cupules ou puits, agitation, incubation, lecture de résultats. Ils sont pilotés par des logiciels spécifiquement adaptés au type d'analyse que l'on réalise. Pour visualiser l'effet des composés testés, les méthodologies le plus souvent utilisées sont la fluorescence, la radioactivité, la scintillation par proximité* SPA: scintillation proximity assay , les tests cellulaires bactériens. Un criblage à haut débit permet d'analyser sur un crible défini, de 100 000 à 500 000 molécules en quelques semaines1. L'efficacité d'un crible est directement liée à la pertinence de la cible bactérienne choisie. Depuis dix ans, la recherche publique mondiale a fourni nombre de résultats dans des domaines variés de la bactériologie générale structure, biochimie, physiologie et virulence bactérienne et des mécanismes de résistance.

Quelles sont les cibles bactériennes sur lesquelles pensent pouvoir agir les laboratoires pharmaceutiques ? Et, tout d'abord, quelles stratégies employer pour contrer la résistance bactérienne aux antibiotiques? Deux grandes stratégies se dégagent: rechercher de nouvelles familles de molécules qui s'attaquent à des cibles bactériennes originales, échappant donc au problème de résistance croisée avec les antibiotiques des familles actuellement utilisées ; ou bloquer les mécanismes de résistance des bactéries. Passons en revue quelques-unes des différentes pistes explorées, sachant qu'à l'heure actuelle il est bien difficile de dire quelles sont les plus prometteuses.
L'approche visant à bloquer les mécanismes de résistance a déjà été mise en oeuvre quand on a découvert les bêta-lactamases, ces enzymes bactériennes qui inactivent différents antibiotiques de la famille de la pénicilline les bétâ-lactamines. C'est alors qu'ont été mis au point les inhibiteurs de bêta-lactamases. La multirésistance de certaines bactéries peut également être liée à un effet barrière des enveloppes bactériennes, effet qui empêche l'antibiotique d'atteindre sa cible dans le corps bactérien voir l'article de P. Trieu-Cuot et C. Poyart, dans ce numéro2. Pour répondre à ces problèmes d'enveloppe, plusieurs solutions : rechercher des molécules déstabilisant la membrane externe des bactéries à Gram négatif*, pour la rendre perméable aux antibiotiques ; rechercher des antibactériens dont la structure chimique échappe à l'action des pompes d'efflux, ces protéines insérées dans la membrane bactérienne qui rejettent les molécules dans le milieu extérieur ; ou encore développer des molécules interférant avec la synthèse des éléments de structure de ces pompes. Pour le premier déstabilisation de la membrane externe et le troisième cas inhibition des pompes, les molécules issues de cette recherche seraient utilisées en complément des antibiotiques déjà commercialisés. Dans le deuxième cas molécule échappant aux pompes d'efflux, on obtiendra une nouvelle famille d'antibiotique ou un antibiotique dérivé des familles existantes.

Autre piste, le processus de réplication de l'ADN bactérien offre aussi des cibles intéressantes. Chez Escherichia coli, par exemple, plus de trente protéines sont impliquées dans la réplication de l'ADN. La mutation des gènes codant ces protéines entraîne généralement un blocage de la réplication, suivi d'un arrêt de la croissance et souvent de la mort bactérienne. D'autre part, la machinerie de réplication est similaire chez la plupart des bactéries. De ce fait, un inhibiteur de la réplication a toutes les chances d'avoir un spectre d'activité large. A l'heure actuelle une famille d'antibactériens, les quinolones, a pour cible les topoisomérases, enzymes impliquées dans les changements de conformation de l'ADN. Mais on connaît maintenant une vingtaine d'enzymes polymérase III holoenzyme et ses sous- unités, ou encore DnaA, DnaB et DnaC... qui interviennent dans la phase initiale de réplication de l'ADN: ce sont autant de cibles potentielles pour de nouveaux agents antibactériens3.
La division cellulaire est un autre exemple de cible, d'ailleurs liée à la précédente. En effet, le processus de formation de la membrane la septation qui va séparer une bactérie en deux cellules filles est intimement coordonné au début de la réplication de l'ADN.
Un ensemble de protéines appelées Fts régulent et coordonnent la division d'une bactérie. L'une d'entre elles nommée FtsZ est impliquée dans la phase précoce de division et régule par sa concentration la fréquence de septation. Une faible augmentation de la production de cette protéine entraîne la formation de mini- cellules, alors qu'une forte augmentation de cette même protéine conduit à une filamentation et à la mort bactérienne4. Des composés interférant avec FtsZ pourraient donc être de bons candidats antibiotiques.
Dans un avenir plus lointain, un autre domaine, récemment mis en lumière, pourrait générer des cibles originales. Ce sont les voies de communication intercellulaires des bactéries. Bien qu'étant des organismes unicellulaires, les bactéries, lorsqu'elles se multiplient, sont intégrées dans une organisation multicellulaire générant des comportements de groupe liés à la densité microbienne dans un environnement donné. Ces comportements de groupes sont régulés par des signaux extracellulaires, véhiculés par des substances appelées phéromones. Chez les bactéries à Gram positif, ces phéromones sont des peptides. Chez les bactéries à Gram négatif, ce sont généralement des métabolites de la N-acylhomosérine lactone*. Ces systèmes de régulation du comportement des populations microbiennes, regroupés sous le terme anglais " quorum sensing », contrôlent nombre de fonctions d'une population bactérienne dans son environnement immédiat5. Les bactéries possèdent également des systèmes dits à deux composants, constitués d'un détecteur de surface capable de recevoir des signaux de l'environnement proche, et d'un transducteur permettant de transférer l'information jusqu'à certains gènes de l'ADN. L'activation de ces derniers modifie le comportement de la cellule bactérienne pour répondre au signal reçu. Enfin de nombreuses bactéries peuvent dialoguer avec les cellules-hôtes cellules épithéliales*, endothéliales* ou encore phagocytaires*. Elles produisent dans le milieu extérieur des molécules qui interfèrent avec la cellule-hôte et détournent certaines de ses activités à leur profit6. Que l'on bloque la production de phéromones, le détecteur ou le transducteur du système à deux composants, l'idée sous-jacente est d'empêcher la bactérie de s'adapter à son environnement sans porter atteinte à sa survie, ce qui devrait éviter l'apparition de résistances.

Un dernier exemple de cible potentielle est la capacité d'adhérence des bactéries aux cellules qu'elles infectent. Pour beaucoup d'agents pathogènes, la première phase de la colonisation d'un hôte se caractérise par l'attachement spécifique des bactéries aux cellules d'un tissu ou à un biomatériau implanté cathéter, prothèse.... Généralement, cette adhérence résulte de l'interaction spécifique d'une adhésine bactérienne, le plus souvent de nature protéique, et d'un récepteur cellulaire servant de lien entre la bactérie et l'hôte cellule ou biomatériau. La connaissance approfondie de ces systèmes d'adhérence chez différentes bactéries pathogènes, telles que les colibacilles, les staphylocoques ou encore les streptocoques, permet d'envisager le développement de molécules capables de les bloquer et donc de prévenir l'installation de l'infection voir figure7.
A plus long terme, l'innovation devrait également venir de la génomique, c'est- à-dire de la caractérisation et du séquençage total du génome et de son exploitation. Depuis quelques années, le décryp- tage systématique des génomes des bactéries pathogènes monte en puissance. Depuis le premier séquençage d'un génome bactérien, celui d' Haemophilus influenzae en 1995, une dizaine d'autres ont déjà été totalement séquencés, par des réseaux de laboratoires publics ou par des sociétés privées8. On peut s'attendre à ce que le génome de la majorité des bactéries pathogènes pour l'homme soit séquencé au début des années 2000.
Un génome bactérien correctement reconstitué et annoté dont les gènes sont identifiés doit apporter de nouvelles cibles. Mais le chemin sera long, car seuls certains gènes intéressent la recherche antibactérienne: ainsi un génome contenant, par exemple, 2 000 gènes comporte probablement 10 % de gènes essentiels à la croissance in vitro, et quelques pour-cent pour l'expression de la virulence. Mais la constitution de banques de séquences de gènes n'est que la première étape d'un travail colossal qui doit mener à l'étude de la fonction des nouveaux gènes découverts, et à une meilleure compréhension du rôle des gènes déjà connus. Ce n'est que lorsque la fonction des gènes sera élucidée que nous pourront identifier des cibles innovantes. Pour exploiter l'énorme masse de données du séquençage, il faut disposer d'outils moléculaires nouveaux et performants voir l'encadré: " Biopuces et peignage d'ADN ". L'exploitation des banques de gènes grâce à la bioinformatique permet, par étude d'homologie de séquences, d'accéder à la fonction d'une partie des gènes nouvellement identifiés. Une autre méthode consiste à étudier l'impact de l'inactivation de ces gènes sur la croissance bactérienne.
Il est également possible de rechercher des gènes qui ne s'expriment qu' in vivo, lors des phases d'infection et de multi- plication9. On sait peu de choses de ces gènes qui gouvernent l'expression de la pathogénicité chez l'hôte, pour la simple raison que la majorité des études de microbiologie moléculaires ont été réalisées sur des bactéries cultivées en tubes à essai et non dans un organisme vivant. Mais aujourd'hui plusieurs méthodes expérimentales permettent de les identifier:
- la technique d'expression de gènes in vivo IVET, pour in vivo expression technology . Les chercheurs travaillent avec des souches bactériennes mutantes qui, par exemple, ne peuvent survivre que si on leur fournit une base azotée, la purine on dit qu'elles sont auxotrophes à la purine. Ils construisent des plasmides* contenant le gène codant la purine et un gène marqueur celui d'une enzyme, la galactosidase, mais pas de promoteur séquence d'ADN qui déclenche l'expression d'autres gènes. Ces plasmides sont introduits dans les bactéries et s'intègrent dans leur chromosome. Après avoir injecté les bactéries ainsi modifiées à une souris, on recherche celles qui ont pu se multiplier in vivo . Si oui, c'est qu'un promoteur de la bactérie s'est exprimé, permettant la production de purine. On peut alors l'identifier grâce au gène marqueur puis, enfin, le repérer dans la souche bactérienne. Outre l'auxotrophie à la purine, les chercheurs se servent, par exemple, de souches résistantes au chloramphénicol ;
- la méthode d'induction différentielle de fluorescence DFI, pour differential fluorescence induction . Elle repose sur le même principe que la précédente. Mais dans ce cas le plasmide contient le gène d'une protéine vert fluorescent GFP, pour green fluorescent protein , facilement repérable in vivo s'il est activé par un promoteur bactérien ;
- la mutagenèse dirigée STM, pour signature-tagged mutagenesis . Elle est fondée sur l'emploi d'un pool de souches bactériennes mutantes. Ce sont des mutants dits d'insertion, c'est-à-dire que l'on a introduit au hasard dans leur génome des fragments d'ADN, ce qui bloque l'expression des gènes. On injecte ces bactéries à la souris, puis on compare les souches cultivées in vitro à celles qui se sont multipliées in vivo . Si l'on ne retrouve pas certaines souches chez l'animal, c'est qu'on a muté un gène essentiel pour l'infection ;
- la transformation d'une souche non pathogène en pathogène. Il s'agit d'introduire dans des bactéries avirulentes des gènes issus de souches virulentes, dont on pense qu'ils ont un rôle important dans l'infection. Puis d'évaluer le pouvoir pathogène chez l'animal des souches ainsi créées ;
- la technique d'hybridation soustractive d'ARN messagers. Son but est d'éliminer la majorité des gènes dits domestiques ceux du métabolisme de base ne jouant pas un rôle majeur in vivo .
Complémentaire de la génomique, un nouveau champ de recherche se développe rapidement : la protéomique. Il s'agit de l'analyse systématique de toutes les protéines d'une bactérie, grâce à l'emploi conjoint de techniques éprouvées d'analyse des protéines, de la robotique et de l'informatique voir l'encadré : " Qu'est-ce que la protéomique ? ". En recherche antibactérienne, elle permet l'étude des protéines intervenant dans les mécanismes de résistance aux antibiotiques ou des facteurs de virulence.

Revenons, entre autres, au processus de développement du médicament. On a identifié une cible innovante, mis au point le criblage primaire des pharmacothèques, sélectionné les composés répondant positivement à ce crible, validés les pistes chimiques, identifié et optimisé les têtes de série. Les meilleures candidates, quand elles ont une activité antibiotique classique inhibition de la croissance ou activité létale, entrent alors dans le processus bien défini de prédéveloppement études bactériologiques précliniques in vitro et infections expérimentales10. Mais il n'en va pas de même si l'on s'intéresse à des molécules dont l'activité s'exerce sur la capacité d'une bactérie à maîtriser son environnement immédiat cellules ou tissus de l'hôte, ou encore sur les facteurs de virulence responsables de la pathogénicité du micro-organisme. Dans ce cas, les molécules n'ont pas ou peu d'impact sur la croissance bactérienne. Il va falloir, par exemple, démontrer que l'on protège l'animal, ou que l'on diminue la durée de l'infection. Mais il n'existe pas encore de méthodes d'évaluation d'activité référencées permettant de juger directement ou indirectement de l'activité d'une molécule sur un facteur de virulence. Il nous faut mettre au point des tests sur animaux, des modèles cellulaires par exemple inhibition de la capacité d'adhérence de la bactérie à des cellules épithéliales, des modèles d'étude d'activité curative molécule seule ou associée à un antibiotique classique ou prophylactique.
Il n'est pas exagéré d'écrire que la recherche pharmaceutique dans le domaine des antibactériens entre dans une nouvelle époque. Les connaissances en microbiologie fondamentale, médicale et moléculaire, s'accumulent rapidement. Les outils de recherche de nouvelles molécules actives sur les bactéries sont de plus en plus performants. Les pro- chaines années verront sans aucun doute apparaître de véritables innovations thérapeutiques et prophylactiques. Elles devraient répondre, au moins en partie, au problème de la multirésistance aux familles d'antibiotiques disponibles. Rappelons toutefois qu'il faut une dizaine d'années pour développer un nouveau médicament, et qu'une bactérie, grâce à son remarquable pouvoir d'adaptation, est toujours capable de contourner une difficulté majeure mettant en cause sa pérennité.
1D.W. Brandt, Drug Discov. Today, 3, 61, 1998.
2I.T. Paulsen et al., Microbiol. Rev., 60, 575, 1996.
3C.S. McHenry, Emerging Targets in Antibacterial and Antifungal Chemotherapy, J. Sutcliffe et N.H. Georgopapadakou eds, New York, Chapman et Hill, p. 37, 1992.
4J. Luntkenhaus et al., Annu. Rev. Biochem., 66, 93, 1997.
5K.M. Gray, Trends in Microbiology, 5, 184, 1997.
6L.M. Albright et al., Annu. Rev. Genet., 23, 311, 1989.
7I. Ofek et al., Trends in Microbiology, 4, 257, 1996.
8R.D. Fleishchmann et al., Science, 269, 496, 1995.
9H. Smith, Trends in Microbiology, 6, 239, 1998.
10 J.F. Desnottes, T ibtech , 14, 134, 1996.
11D. Michelet et al., Pour la Science, 241, 50, 1997.
12 G. Ramsay, Nature Biotechnology, 16, 40, 1998.
13A. Bensimon et al., Science, 265, 2096, 1994.
14M.R. Wilkins et al., Biotech. Gen. Eng. Rev., 13, 19, 1995.

NOTES
*VIRULENCE Aptitude d'un agent pathogène à se multiplier dans un organisme et à y sécréter des toxines.
*Le principe du dosage par SCINTILLATION PAR PROXIMITÉ repose sur l'interaction entre un substrat radiomarqué, greffé sur un support dont la proximité permet l'amplification de la scintillation. La coupure du substrat, par exemple par une enzyme bactérienne, éloigne le substrat du support ce qui supprime la scintillation. Mais si la molécule à tester inhibe l'enzyme, la scintillation persiste.

*GRAM NÉGATIF :Les bactéries à Gram négatif et à Gram positif se distinguent selon leur réaction différente à une technique de coloration mise au point par le Danois Christian Gram. Les bactéries Gram­ ont une double membrane.

*SONDE OLIGONUCLÉOTIDIQUE Fragment, court et bien défini, d'ADN simple brin les nucléotides sont les éléments de base de l'ADN. Ces sondes servent à repérer par hybridation par reconstitution de l'ADN double brin une séquence d'ADN identique ou apparentée.

*L'ÉLECTROPHORÈSE consiste à faire migrer, dans un gel soumis à un champ électrique, les molécules protéines ou ADN, ARN... présentes dans un mélange. En effet, les molécules migrent différemment selon leur charge électrique, leur taille et leur forme.

*CHROMATOGRAPHIE LIQUIDE HAUTE PERFORMANCE CLHP Technique de séparation de composés chimiques, par exemple des protéines, qui met à profit leur diffusion différentielle dans un support. La CLHP utilise des matrices de chromatographie très homogènes, formées de résines de silice contenues dans des colonnes sous pression.

LA CHIMIE COMBINATOIRE, SOURCE DE DIVERSITÉ MOLÉCULAIRE
La recherche pharmaceutique reste encore semi-empirique. Son approche repose sur le criblage systématique d'un grand nombre de molécules provenant des échantillothèques constituées au fil du temps. Traditionnellement, ces banques de molécules renfermaient surtout des collections de produits de synthèse, d'intermédiaires de synthèse et d'extraits naturels. Depuis les années 1980, la chimie combinatoire a permis d'accroître considérablement la diversité des molécules soumises au criblage : elle permet la synthèse rapide d'un grand nombre de composés chimiques, sans les purifier11I. Ces derniers sont ensuite testés et seuls les produits actifs seront purifiés et caractérisés. Pour la synthèse en parallèle, on fait réagir dans les puits d'une microplaque des entités chimiques des synthons de différents types acides aminés, amines, nucléotides, acides..., ce qui conduit à l'obtention simultanée de toutes les combinaisons possibles de ces synthons. Contrairement à la synthèse en parallèle, où chaque composé reste dans son propre puits de microplaque, la synthèse par mélange et répartition brasse des produits qui se ressemblent dans un même tube. On peut aussi créer des banques de molécules en utilisant un squelette chimique, appelé répartiteur de fonctions chimiques, sur lequel on greffe des motifs variés dans différentes positions. Ces techniques ont vite abouti à des banques comportant plusieurs millions de molécules ce qui pose des problèmes d'analyse. Aujourd'hui, tout en préservant la diversité moléculaire, la taille des pharmacothèques est souvent plus réduite, de mille à quelques dizaines de milliers de molécules.

QU'EST-CE QUE LA PROTÉOMIQUE?
La protéomique, néologisme apparu ces dernières années, n'est rien d'autre que l'analyse systématique des protéines bactériennes. Cette analyse est réalisée par utilisation conjointe de l'électrophorèse bidimensionnelle*, de la chromatographie liquide haute performance* CLHP et de la spectrométrie de masse, associées à la bioinformatique et à la robotique14. Jusqu'à récemment, l'électrophorèse 2D n'avait pu être automatisée, les gels étant insuffisamment stables. C'est aujourd'hui chose faite: certaines technologies emploient des gels qui donnent des résultats bien reproductibles lors d'analyses à haut débit. L'intérêt des électrophorèses c'est qu'elles peuvent être réalisées avec de très faibles quantités de protéines et qu'elles permettent la séparation de milliers de protéines. L'étape suivante consiste à caractériser ces protéines en termes de séquence d'acides aminés. On peut identifier certaines d'entre elles en les comparant aux protéines déjà répertoriées dans des banques. Celles qui ne sont pas connues sont excisées du gel et clivées à l'aide d'enzymes protéolytiques pour obtenir de courts fragments polypeptidiques. Ces fragments sont ensuite séparés par CLHP et analysés par spectrométrie de masse pour en définir la séquence d'acides aminés.

BIOPUCES ET PEIGNAGE D'ADN
Parmi les nouvelles techniques d'étude des génomes, figurent en bonne place les puces à ADN, ou biopuces, dont le marché est dominé par les sociétés américaines, et le peignage moléculaire, mis au point à l'Institut Pasteur de Paris. Les biopuces servent à identifier des fragments d'ADN ou d'ARN grâce à leur hybridation en parallèle sur des microsurfaces greffées unités d'hybridation avec des milliers de sondes oligonucléotidiques*12.
La puce à ADN est issue des techniques de miniaturisation de l'informatique et de la chimie des nucléotides. Ces derniers sont fixés sur support de verre au moyen de technologies semblables à celles utilisées pour les microprocesseurs. Les sondes oligonucléotidiques sont synthétisées in situ sur un support photosensible par photolithographie procédé de la firme Affymetrix, ou greffées par impression à jet d'ADN sur le support à l'aide d'un champ électrique procédés de Nanogen et de Cis Bio-international ou encore dans un bloc de polyacrylamide procédé Mirzabekov. Lors de la réaction d'hybridation, chaque unité d'hybridation est destinée à reconnaître, dans un mélange déposé à la surface de la puce, une séquence cible d'ADN ou d'ARN marquée en solution.

Une autre méthodologie d'avenir, complé- mentaire de la puce à ADN, est celle du peignage moléculaire d'ADN13. Elle consiste à ancrer, par leurs extrémités, des molécules d'ADN en solution sur une surface de verre traité, et à les étirer à l'aide de la tension superficielle d'un ménisque en mouvement. Elle autorise l'emploi de fragments d'ADN plus longs que dans les biopuces. Une fois l'ADN peigné, irréversiblement fixé sur la surface de verre, on met en place des protocoles d'hybridation fluorescente in situ pour détecter, mesurer et positionner des sondes nucléotidiques dans n'importe quel génome.

SAVOIR
:
I. Chopra et al., « The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics », Antimicrob. Agents Chemother., 41, 497, 1997.
J.-F. Desnottes, " Recherche de nouveaux antibactériens, évolution des méthodes d'évaluation microbiologiques », Bull. Soc. Fr. Microbiol., 10 hors série, 37, 1995.
M. Bellis et al., « La puce ADN : un multiréacteur de paillasse », Médecine/Science, 13, 1317, 1997.

 

 DOCUMENT      larecherche        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon