ecole de musique piano
     
menu
 
 
 
 
 
 

SUPRACONDUCTIVITE

 

Paris, 26 novembre 2010

Supraconductivité à haute température : un nouvel ordre magnétique aux origines du phénomène ?


Les matériaux supraconducteurs à haute température critique révèlent une part de leur mystère : les chercheurs du Laboratoire Léon Brillouin (CEA/CNRS), en collaboration avec des scientifiques de l'université du Minnesota (USA), sont parvenus à valider expérimentalement la théorie selon laquelle il existerait dans ces matériaux un état ordonné de la matière, aux propriétés magnétiques inédites, qui précèderait la phase supraconductrice. Cette découverte a fait l'objet d'une publication en novembre dans la revue Nature et constitue une étape importante dans la maîtrise de la supraconductivité à haute température.
Découverte en 1911, la supraconductivité est un état de la matière caractérisée par l'absence de résistance électrique et l'annulation du champ magnétique. Les matériaux supraconducteurs sont ainsi en mesure de conduire le courant électrique sans déperdition d'énergie. Pour devenir supraconducteur, ces matériaux doivent classiquement être portés à une température extrêmement basse, qui peut varier entre 1 et 20 K (soit entre -272 et -253 degrés Celsius), mais qui reste proche du zéro absolu.

Depuis 1987 cependant, la supraconductivité n'est plus confinée à ces températures extrêmes : les chercheurs ont découvert que certains matériaux à base d'oxyde de cuivre étaient capables d'atteindre l'état supraconducteur à une température de 135 K (-138 degrés Celsius). Alors que les supraconducteurs classiques nécessitent un refroidissement à l'hélium liquide, ces matériaux, appelés supraconducteurs à haute température critique, peuvent être simplement refroidis à l'azote liquide, ce qui pourrait rendre leur utilisation beaucoup plus accessible.

Pour expliquer ce phénomène de la supraconductivité à haute température, les physiciens doivent parvenir à élucider le comportement particulier de ces matériaux qui, avant de devenir supraconducteurs, passent par une phase totalement inédite. Au cours de cette phase intermédiaire, appelée phase de « pseudo-gap », apparaissent des propriétés électroniques anormales, qui ne correspondent pas au comportement des métaux conventionnels.

Plusieurs modèles théoriques ont été proposés pour décrire cette phase de pseudo-gap. L'un d'entre eux, celui du professeur C.M. Varma, de l'Université de Riverside (Californie), postule l'existence d'un ordre caché d'où émergerait l'état supraconducteur de la matière : en dessous d'une certaine température, apparaîtrait un nouvel état de la matière dans lequel des boucles microscopiques de courant électrique se formeraient de manière spontanée. La phase de pseudo-gap résulterait de l'apparition de ces nano-boucles de courant.

C'est cette théorie qu'une équipe du Laboratoire Léon Brillouin (CEA/CNRS), en collaboration avec une équipe de l'université du Minnesota (USA), vient de valider, grâce aux observations réalisées avec le spectromètre à neutrons polarisés IN20(1) de l'Institut Laue Langevin (ILL). En effet, pour la première fois, l'équipe a pu ainsi observer une excitation magnétique insoupçonnée, présentant une très faible dispersion et n'existant exclusivement que dans la phase de pseudo-gap. Ce comportement est celui attendu lorsqu'on postule l'existence de nano-boucles de courant. Après la mise en évidence d'un ordre magnétique dans la phase pseudo-gap en 2006, l'observation de ses excitations magnétiques renforce donc la théorie d'une origine magnétique de la supraconductivité à haute température. L'interprétation de ce phénomène fascinant semble proche, mais ces observations doivent encore être validées sur d'autres composés.

Expliquer les performances de ces matériaux supraconducteurs à haute température critique est un vrai défi. De nombreux laboratoires sont en compétition à travers le monde pour découvrir les fondements théoriques de la supraconductivité à haute température critique. Les enjeux scientifiques et technologiques sont majeurs car les contraintes liées aux très basses températures nécessaires pour atteindre l'état supraconducteur de la matière restent un frein au développement des technologies utilisant la supraconductivité.

 

Notes :
(1) Ce spectromètre à haut flux de neutrons est actuellement le plus performant au monde de sa catégorie.

DOCUMENT        CNRS       LIEN

 
 
 
 

PLUS VITE QUE LA LUMIERE...

 

OPERA. Ce résultat étonnant sera publié vendredi 23 septembre 2011 à 2h (heure de Paris) sur ArXiv et présenté ce même jour à 16h lors d'un séminaire au CERN, à Genève, retransmis en ligne.
Avec la théorie de la relativité restreinte énoncée en 1905, Einstein avait notamment prouvé que rien ne pouvait dépasser la vitesse de la lumière dans le vide. Pourtant, plus d'un siècle après, au terme de trois années de mesures de très haute précision et d'analyses complexes, l'expérience OPERA(1) fait état d'un résultat totalement inattendu : les neutrinos arrivent au Gran Sasso avec une petite mais significative avance par rapport au temps que la lumière aurait pris pour faire le même parcours dans le vide.

L'expérience OPERA est dédiée à l'observation d'un faisceau de neutrinos produit par les accélérateurs du CERN à Genève et détecté 730 km plus loin depuis le laboratoire sous-terrain de Gran Sasso en Italie. Cette distance, la lumière la parcourt en 2,4 millisecondes. Pourtant, l'expérience OPERA a pu mesurer des neutrinos arrivant à Gran Sasso 60 nanosecondes plus tôt. Autrement dit, sur une « course de fond » de 730 km, les neutrinos franchissent la ligne d'arrivée avec 20 mètres d'avance sur des photons hypothétiques qui auraient parcouru la même distance.

« Nous avons mis en place un dispositif entre le CERN et le Gran Sasso nous permettant une synchronisation au niveau de la nanoseconde et mesuré la distance entre les deux sites à 20 centimètres près. Ces mesures présentent de faibles incertitudes et une statistique telle que nous accordons une grande confiance à nos résultats », explique Dario Autiero, chercheur du CNRS à l'Institut de physique nucléaire de Lyon (IPNL). « Nous avons donc hâte de confronter nos mesures avec celles en provenance d'autres expériences, car rien dans nos données ne permet d'expliquer pourquoi nous semblons observer des neutrinos en excès de vitesse. » Ces résultats reposent sur l'observation de plus de 15000 neutrinos.

« Ce résultat est totalement inattendu », affirme Antonio Ereditato, de l'Université de Berne et porte-parole de l'expérience OPERA. « De longs mois de recherche et de vérifications ne nous ont pas permis d'identifier un effet instrumental expliquant le résultat de nos mesures. Si les chercheurs participant à l'expérience OPERA vont poursuivre leurs travaux, ils sont impatients de comparer leurs résultats avec d'autres expériences de manière à pleinement évaluer la nature de cette observation ».

Jusqu'ici, la vitesse de la lumière a toujours été considérée comme une limite infranchissable. Si ce n'était pas le cas, cela pourrait ouvrir des perspectives théoriques complètement nouvelles. Compte tenu de l'énorme impact qu'un tel résultat pourrait donc avoir pour la physique, des mesures indépendantes s'avèrent nécessaires afin que l'effet observé puisse être réfuté ou bien formellement établi. C'est pourquoi les chercheurs de la collaboration OPERA ont souhaité ouvrir ce résultat à un examen plus large de la part de la communauté des physiciens.

L'expérience OPERA a été inaugurée en 2006 afin d'étudier les rares transformations (oscillations) des neutrinos du muon en neutrinos du tau. Une de ces oscillations a été observée en 2010, témoignant de la capacité unique de cette expérience en matière de détection des signaux quasi insaisissables des neutrinos tau.

Quatre laboratoires du CNRS sont impliqués dans l'expérience OPERA :

- l'Institut de physique nucléaire de Lyon (CNRS/Université Claude Bernard-Lyon 1),

- l'Institut pluridisciplinaire Hubert Curien (CNRS/Université de Strasbourg),

- le Laboratoire de l'accélérateur linéaire (CNRS/Université Paris-Sud 11) qui a participé jusqu'en 2005,

- le Laboratoire d'Annecy le Vieux de physique des particules (CNRS/Université de Savoie).

DOCUMENT           CNRS

 
 
 
 

NANOTECHNOLOGIE

 

Nano-électronique et informatique


Les révolutions de l' information et des communications sont un des faits marquants du siècle et vont continuer à bouleverser dans ce nouveau siècle tous les domaines de l'activité humaine, y compris nos modes de vie. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons (les " grains " d'électricité) ou de photons (les " grains " de lumière) (quelques dizaines de milliers de chaque pour l'élément d'information, le " bit "), et la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres, que ce soit mécaniques, thermiques, optiques ou électriques. C'est justement les propriétés moyennes des semi-conducteurs qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût (la puce de plusieurs centaines de millions de transistors coûte le même prix qu'un transistor dans les années 60), fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. En savoir plus :
http://pmc.polytechnique.fr/ weisbuch/microelectronique

CONFERENCE         CANAL  U           LIEN

 

 
 
 
 

LES CHAMPS MAGNETIQUES INTENSES

 

La physique en champs magnétique intense


Le champ magnétique semble toujours un peu mystérieux, pourtant les phénomènes magnétiques sont connus depuis presque trois mille ans et ont trouvé des applications partout dans notre vie quotidienne. Le but de cet exposé est à la fois d'expliquer la physique du champ magnétique et de démontrer l'importance des champs magnétiques intenses dans la recherche. La conférence débutera par un bref résumé de la physique des champs magnétiques, à la fois de façon historique et fondamentale. Ensuite, je discuterai trois grands domaines de la physique ou le champ magnétique intervient La manipulation magnétique concerne tous les phénomènes qui génèrent des forces mécaniques sur des objets. L'aimant permanent avec lequel on colle des feuilles sur la porte du frigo, l'électromoteur, la séparation magnétique et la lévitation magnétique sont des exemples parmi tant d'autres. Ces phénomènes ont trouvés beaucoup d'applications, mais sont aussi utilisés comme outils dans la recherche. Le champ magnétique est une perturbation universelle et précise qui permet de sonder la matière et de déterminer beaucoup de paramètres physiques et chimiques. L'exemple le plus connu est l'imagerie médicale par résonance magnétique nucléaire mais il existe beaucoup d'autres sondes basées sur le champ magnétique. Les champs magnétiques intenses peuvent induire des nouveaux états de la matière, en particulier en combinaison avec des basses températures. Dans la physique des solides, plusieurs états exotiques ont été observés, comme des quasi-particules dans les gaz électroniques bidimensionnels, des condensats de Bose-Einstein dans des cristaux et la supraconductivité induite par le champ magnétique.

CONFERENCE          CANAL  U         LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon