ecole de musique piano
     
menu
 
 
 
 
 
 

MOTEURS MOLECULAIRES

 

Paris, 4 mars 2011

Une percée dans la conception de moteurs moléculaires
Des chercheurs du CNRS et de l'Université de Bordeaux, en collaboration avec une équipe chinoise (1), ont réalisé le premier piston moléculaire capable de s'auto-assembler. Ces recherches représentent une avancée technologique significative dans la conception de moteurs moléculaires. Un tel piston pourrait, par exemple, servir à fabriquer des muscles artificiels ou à créer des polymères à la rigidité contrôlable. Ces résultats sont publiés le 4 mars 2011 dans la revue Science.
Les organismes vivants ont largement recours à des moteurs moléculaires pour remplir certaines de leurs fonctions vitales comme stocker l'énergie, permettre le transport cellulaire ou même se propulser dans le cas des bactéries. Les agencements moléculaires de ces moteurs étant extrêmement complexes, les scientifiques cherchent à créer leurs propres versions, plus simples. Le moteur développé par l'équipe internationale emmenée par Ivan Huc (2), chercheur CNRS au sein de l'Unité « Chimie et biologie des membranes et des nanoobjets » (CNRS/Université de Bordeaux), est un « piston moléculaire ». Comme un véritable piston, il est constitué d'un axe sur lequel glisse une pièce mobile, à la différence près que l'axe et la pièce ne mesurent que quelques nanomètres de long.

Plus précisément, l'axe est formé d'une molécule longiligne, tandis que la pièce mobile est une molécule en forme d'hélice (toutes deux sont des dérivés de molécules organiques spécialement synthétisés pour l'occasion). Comment le mouvement de la molécule hélicoïdale est-il possible le long de l'axe ? C'est l'acidité du milieu dans lequel baigne le moteur moléculaire qui contrôle l'avancée de l'hélice sur l'axe : en augmentant l'acidité, on pousse l'hélice vers une extrémité de l'axe, car elle possède alors une affinité pour cette portion de la molécule filiforme ; en réduisant l'acidité, on inverse le processus et l'hélice fait machine arrière.

Ce dispositif offre un avantage essentiel par rapport aux pistons moléculaires déjà existants : l'auto-assemblage. Dans les versions précédentes, qui prennent la forme d'un anneau glissant sur une tige, la pièce mobile passe mécaniquement à travers l'axe avec une extrême difficulté. A l'inverse, le nouveau piston se construit tout seul : les chercheurs ont conçu la molécule hélicoïdale spécifiquement pour qu'elle vienne s'enrouler spontanément autour de l'axe, tout en conservant une certaine liberté de mouvement ensuite pour ses déplacements latéraux.

En permettant une fabrication à grande échelle du piston moléculaire, cette faculté d'auto-assemblage laisse espérer voir fleurir rapidement des applications. Les domaines concernés sont variés : biophysique, électronique, chimie... En greffant bout à bout plusieurs pistons, on pourrait, par exemple, réaliser une version simplifiée d'un muscle artificiel, capable de se contracter sur commande. Une surface hérissée de pistons moléculaires deviendrait, à loisir, un conducteur ou un isolant électrique. Dernière idée : on peut imaginer une version grand format de l'axe sur lequel glisseraient plusieurs hélices, ce qui fournirait un polymère à la rigidité mécanique ajustable. On le voit, les possibilités de ce nouveau piston moléculaire sont (presque) infinies.

DOCUMENT           CNRS              LIEN

 
 
 
 

PROPULSION POUR MICRO-OBJETS

 

Paris, 28 octobre 2010

Nouveau système de propulsion pour micro-objets
Un nouveau mode de propulsion pour micro et nano-objets métalliques a été mis au point par des chercheurs de l'Institut des sciences moléculaires (CNRS/ENSCBP/Universités Bordeaux 1 et 4). Ce procédé s'appuie sur le concept original de l'électrochimie bipolaire : sous l'effet d'un champ électrique, une des extrémités d'un objet métallique croît tandis que l'autre extrémité se dissout. Grâce à cette auto-régénération permanente, des objets se déplacent à des vitesses de l'ordre d'une centaine de micromètres par seconde. Publiés dans le Journal of the American Chemical Society, ces travaux permettent d'envisager des applications dans les domaines allant de la nano-médecine à la micromécanique.
Plusieurs approches sont actuellement explorées pour appliquer à des nano ou des micro-objets des mouvements directionnels contrôlés. Les scientifiques étudient notamment l'utilisation de molécules dites « carburants » qui, suite à leur décomposition, peuvent propulser un objet dissymétrique. Autres pistes de travail : reproduire les systèmes naturels en imitant le déplacement de bactéries ou la rotation de systèmes biologiques bien connus comme l'ATP synthase.

Pour la première fois, deux chercheurs de l'Institut des sciences moléculaires de Bordeaux (CNRS/ENSCBP/Universités Bordeaux 1 et 4) montrent qu'il est possible de générer un tel mouvement via une approche originale appelée « électrochimie bipolaire ». Ces chimistes soumettent à un champ électrique des objets métalliques qui présentent alors une différence de charge aux extrémités : l'une un excès et l'autre un déficit. Cette polarisation est suffisamment importante pour que des réactions chimiques opposées d'oxydoréduction se produisent à chaque extrémité. Ainsi, d'un côté l'objet va s'oxyder et se détruire. De l'autre côté, en procédant à la réduction d'un sel métallique présent dans la solution, un dépôt de métal va se former, conduisant à la croissance de l'objet. In fine, ce procédé conduit à un auto-renouvellement de l'objet tout en induisant son déplacement. Le mouvement généré de cette façon est dirigé vers l'une des deux électrodes et la vitesse peut être contrôlée par la différence de potentiel appliquée entre les deux électrodes.

L'avantage de cette méthode est qu'aucun combustible classique n'est nécessaire pour provoquer ce mouvement. De plus, on peut envisager d'adapter ce micromoteur pour pousser d'autres objets dans une direction prédéfinie et de les faire complètement disparaître une fois qu'ils ont effectué leur tâche. Ce procédé original ouvre des perspectives dans des domaines d'application variés allant de la micromécanique à la nano-médecine.

DOCUMENT         CNRS           LIEN

 
 
 
 

NANOPARTICULES ET FILTRES A EAU

 

Paris, 18 JUIN 2012

Une membrane dynamique capable de s'auto-réparer
Les membranes, matériaux poreux utilisés notamment pour filtrer des liquides, constituent un marché en pleine croissance. Pourtant, leur conception peut encore espérer d'importantes améliorations. S'inspirant des membranes cellulaires, des chercheurs de l'Institut européen des membranes (CNRS / ENSCM / Université Montpellier 2), en collaboration avec l'Institut de chimie radicalaire (CNRS / Aix-Marseille Université) ont développé la première membrane dynamique pour la filtration de l'eau. En fonction de la pression de l'eau, celle-ci peut ajuster de façon autonome la taille de ses pores. De plus, elle est capable de s'auto-réparer en cas de défaillance, ce qui augmente sa durée de vie et renforce la sécurité sanitaire du produit filtré. Ces recherches viennent d'être publiées dans la revue Angewandte Chemie.
Les membranes, qu'elles soient constituées de céramiques ou de polymères, font l'objet de très nombreuses applications, notamment dans l'industrie pharmaceutique et agroalimentaire. Servant aussi à la potabilisation et à la désalinisation de l'eau, leur marché connaît une croissance de 10% par an. Les membranes utilisées jusqu'à présent sont des structures figées : la taille des pores ne peut pas être ajustée. De plus, elles peuvent subir des déchirements qui ne sont pas détectés immédiatement,  ce qui pose des problèmes de sécurité sanitaire.

En s'inspirant des membranes cellulaires, les chercheurs ont mis au point un nouveau type de filtre : une membrane dynamique dont on peut faire varier la taille des pores en fonction de la pression de l'eau qui les traverse. Celle-ci est constituée d'une association de trois polymères de solubilité différente. Ceux-ci forment des micelles, des nanoparticules en constante interaction les unes avec les autres. Jusqu'à une certaine pression, lorsque la force de l'eau augmente, ces micelles ont tendance à s'aplatir, et donc, à réduire la taille des pores dont la membrane est parsemée. Ainsi, à une faible pression de l'ordre de 0,1 bar, la taille des pores est d'environ 5 nanomètres1, ce qui permet de filtrer des macromolécules ou des virus. En augmentant modérément la pression, on obtient des pores de l'ordre de 1 nanomètre qui barrent le passage aux sels, colorants et tensioactifs. Mais si l'on augmente la pression jusqu'à 5 bars, un changement drastique de la morphologie de la membrane se produit et les pores atteignent plus de 100 nanomètres de diamètre, ce qui permet de filtrer les bactéries ou les particules en suspension. Cette propriété unique permettra aux utilisateurs de ne recourir qu'à un seul type de membrane pour tous leurs besoins en filtration.

Mais ce n'est pas tout : ces filtres dynamiques de 1,3 micromètre d'épaisseur sont capables de s'auto-réparer. Si la membrane se fissure, l'équilibre physique qui lie les micelles entre elles est rompu. Celles-ci cherchent alors à rétablir cet équilibre et se réorganisent de façon à combler la fissure. Une perforation d'une taille 85 fois plus grande que l'épaisseur de la membrane peut ainsi être réparée sans intervention humaine et sans l'arrêt de l'opération de filtration. Cette capacité d'autoréparation permettra à la fois de prolonger la durée de vie des membranes et d'augmenter les garanties de sécurité sanitaire.

DOCUMENT            CNRS                 LIEN

 
 
 
 

NANO-FIBRES CONDUCTRICES

 

Paris, 20 AVRIL 2012

Des nano-fibres plastiques hautement conductrices qui se construisent « toutes seules »


Deux équipes du CNRS et de l'Université de Strasbourg, menées par Nicolas Giuseppone 1 et Bernard Doudin2, ont réussi à fabriquer des fibres plastiques fortement conductrices, de quelques nanomètres d'épaisseur. Ces nano-fils, qui font l'objet d'un brevet déposé par le CNRS, se construisent « tout seuls » sous la seule action d'un flash lumineux ! Peu coûteux à obtenir et faciles à manipuler contrairement aux nanotubes de carbone3, ils allient les avantages des deux matériaux utilisés à ce jour pour conduire le courant électrique : les métaux et les polymères organiques plastiques4. En effet, leurs remarquables propriétés électriques sont proches de celles des métaux. De plus, ils sont légers et souples comme les plastiques. De quoi relever l'un des plus importants défis de l'électronique du 21e siècle : miniaturiser ses composants jusqu'à l'échelle nanométrique. Ces travaux sont publiés le 22 avril 2012 dans l'édition en ligne avancée de la revue Nature Chemistry. Prochaine étape : démontrer que ces fibres peuvent être intégrées industriellement dans des appareils électroniques comme les écrans souples, les cellules solaires, etc.
Lors de précédents travaux publiés en 20105, Nicolas Giuseppone et ses collègues étaient  parvenus à obtenir pour la première fois des nano-fils. Pour ce faire, ils avaient modifié chimiquement des molécules de synthèse utilisées depuis plusieurs dizaines d'années dans l'industrie pour le processus de photocopie Xerox® : les « triarylamines ». A leur grande surprise, ils avaient observé qu'à la lumière et en solution, leurs nouvelles molécules s'empilaient spontanément de manière régulière pour former des fibres miniatures. Ces fils longs de quelques centaines de nanomètres (1 nm = 10-9 m, soit un milliardième de mètre), sont constitués par l'assemblage dit «supramoléculaire » de plusieurs milliers de molécules.

Les chercheurs ont ensuite étudié en détail, en collaboration avec l'équipe de Bernard Doudin, les propriétés électriques de leurs nano-fibres. Cette fois-ci, ils ont mis leurs molécules en contact avec un microcircuit électronique comportant des électrodes en or séparées de 100 nm. Puis ils ont appliqué un champ électrique entre celles-ci.

DOCUMENT         CNRS            LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon