|
|
|
|
 |
|
Découverte d’un nouveau type de cellules souches musculaires |
|
|
|
|
|
Découverte d’un nouveau type de cellules souches musculaires
COMMUNIQUÉ | 05 FÉVR. 2010 - 14H39 | PAR INSERM (SALLE DE PRESSE)
BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION
Deux équipes de l’Université Pierre et Marie Curie/Inserm-Groupe Myologie viennent d’identifier une population de cellules souches situées dans les muscles, auparavant inconnues : les “PICs“. Elles peuvent se multiplier et régénérer les tissus musculaires endommagés. Elles peuvent également générer des cellules satellites, essentielles pour la croissance musculaire, mais limitées dans leur capacité de renouvellement. Cette découverte, fondamentale pour la connaissance de la biologie du muscle et porteuse d’espoir pour le traitement de nombreuses maladies invalidantes, a été publiée le 31 janvier 2010 dans Nature Cell Biology.
Cellules satellites : nécessaires pour la croissance et la réparation des muscles
En observant la musculature développée d’un athlète, chacun a du mal à s’imaginer que les fibres musculaires elles-mêmes sont incapables de croître. En cas de traumatisme, les myofibres ne peuvent pas non plus se régénérer. Depuis une quarantaine d’années, on sait que ce sont les “cellules satellites” des muscles de notre squelette qui se chargent de cette tâche. Produites durant le stade embryonnaire à partir de structures appelées “somites”, ces cellules souches particulières sont capables de se différencier en cellules musculaires fonctionnelles et se multiplier tout au long de la vie. Situées le long de la myofibre, les cellules satellites restent dans état de dormance (ou quiescence) tant qu’elles ne sont pas utiles. Lorsqu’une personne fait un effort physique intense, elles se mobilisent pour augmenter la masse musculaire. Lorsqu’une personne se blesse, elles s’activent pour réparer le tissu endommagé.
Vieillissement, dystrophies musculaires… : un renouvellement cellulaire limité
Malheureusement, les maladies affectant les muscles, comme les dystrophies, ou tout simplement le vieillissement naturel, font perdre aux cellules satellites leur capacité d’auto-renouvellement. Et elles ne peuvent donc plus contribuer à la régénération correcte du muscle squelettique… Or, celui-ci constitue la plus grande partie de notre masse corporelle, et il est essentiel au mouvement comme aux fonctions vitales. Respirer, manger ou déglutir exige sa participation ! Pour mieux comprendre le fonctionnement des cellules satellites et ainsi espérer mieux prendre en charge la dégénérescence et les maladies musculaires, de nombreux travaux de recherche se sont donc attachés à les étudier.
Les PICs, des cellules souches inédites au puissant potentiel
L’un des plus récents vient de bouleverser la donne. Deux équipes de l’UMR S 787-Groupe Myologie, l’une dirigée par les Drs Marazzi et Sassoon, l’autre par le Dr Gomes, ont en effet découvert une nouvelle population de cellules souches progénitrices musculaires. Les cellules interstitielles PW1+ (Pax7-), plus simplement “PICs”, se trouvent entre les myofibres, disséminées parmi d’autres cellules que l’on prenait auparavant pour du tissu conjonctif. Si ces PICs ne sont pas issues de la lignée des cellules souches satellites, elles se révèlent toutefois myogènes : elles peuvent produire des myofibres et réparer les tissus musculaires endommagés. Mais elles peuvent également remplacer les cellules satellites !
Les premiers essais in vivo montrent qu’une une faible injection de PICs dans un muscle endommagé produit cet effet. De plus, alors que les cellules-satellites se renouvellent à un taux très faible, les PICs ont la faculté de générer une grande quantité d’autres PICs. Cette découverte apporte des connaissances inédites sur la biologie de la régénération du muscle et ouvre des champs de recherche thérapeutique extrêmement précieux.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
OMÉGA 3 |
|
|
|
|
|
Une carence en oméga 3 pourrait expliquer certains comportements dépressifs
COMMUNIQUÉ | 31 JANV. 2011 - 15H50 | PAR INSERM (SALLE DE PRESSE)
Les conséquences des déficits en acides gras essentiels du régime alimentaire maternel sur le cerveau de son enfant sont peu connues. Cependant on sait que l’insuffisance en acides gras omega 3 est impliquée dans de nombreuses pathologies. Des chercheurs de l’Inserm et de l’INRA associés à des chercheurs espagnols ont fait suivre à des souris un régime pauvre en acides gras Oméga 3. Ils ont découvert que des niveaux réduits d’oméga 3 diminuaient les fonctions des neurones impliqués dans le contrôle des comportements émotionnels.
Les détails de ce travail sont disponibles dans la version online de la revue Nature Neuroscience.
Dans les pays industrialisés, les régimes alimentaires se sont appauvris en acides gras essentiels depuis le début du XXème siècle. Ainsi, le rapport entre les quantités d’acides gras polyinsaturés Oméga 6 et d’acides gras polyinsaturés Oméga 3 dans les rations alimentaires n’a cessé d’augmenter au cours du XXème siècle. Ces acides gras sont des lipides « essentiels » car l’organisme ne peut les synthétiser de novo. Ils doivent donc être apportés par le régime alimentaire.
Or, les lipides sont des éléments indispensables au fonctionnement du système nerveux et leur équilibre doit être préservé dans le cerveau.
Olivier Manzoni, Directeur de Recherche Inserm (Unité Inserm 862 « Neurocentre Magendie » Bordeaux et Unité 901 « Institut de Neurobiologie de la Méditerranée » Marseille) et Sophie Layé, Directeur de Recherche INRA (Unité INRA 1286 « Nutrition et Neurobiologie Intégrée », Bordeaux) et leurs collaborateurs ont émis l’hypothèse qu’une malnutrition chronique dès le développement intra-utérin, influence l’activité des neurones impliqués dans les comportements émotionnels (dépression, anxiété, …) à l’âge adulte.
Pour vérifier leurs hypothèses, les chercheurs ont fait suivre à des souris un régime reflétant ce déséquilibre entre acides gras Oméga 3 et Oméga 6. Ils ont découvert que le déficit des Omega 3 dans le cerveau perturbe la transmission nerveuse : mais pas n’importe laquelle ! En effet, les chercheurs ont observé que seuls les récepteurs cannabinoïdes, qui sont stratégiques pour la transmission nerveuse, voient leur fonction abolie. Ce dysfonctionnement neuronal s’accompagne de comportements dépressifs chez ces souris mal nourries.
Les endocannabinoïdes (endoCB) agissent sur la plasticité synaptique à long terme grâce à leur action rétrograde sur l’élément présynaptique
(DLT : dépression à long terme)
Le système cannabinoïde endogène, dit « endocannabinoïde » est très largement exprimé dans le système nerveux central où il participe à la transmission synaptique. Sur le plan physiologique et comportemental, le système endocannabinoïde est fondamental dans la douleur, l’apprentissage, la prise alimentaire et les comportements émotionnels.
Il existe 2 endocannabinoïdes principaux, qui sont des lipides signaux, constitués de longues chaînes d’acides gras. Ils sont produits en réponse à l’activité neuronale et activent des récepteurs spécifiques appelés récepteurs cannabinoïdes. Les principaux récepteurs cannabinoïdes exprimés dans le système nerveux central sont appelés CB1R.
Le système endocannabinoïde est un acteur majeur de la plasticité synaptique et il est connu que sa dérégulation est impliquée dans les troubles de l’humeur.
Chez les souris déficientes en oméga 3, les habituels effets produits par l’activation des récepteurs cannabinoïdes tant au niveau synaptique que comportemental, n’apparaissent plus. Ainsi, les récepteurs CB1R perdent leur activité au niveau synaptique et l’effet anxiogène du cannabis disparaît.
En conséquence, les chercheurs ont découvert que chez les souris soumises au régime alimentaire déficient en oméga 3, la plasticité synaptique dépendante des récepteurs cannabinoïdes CB1R, est perturbée dans au moins deux structures impliquées dans la récompense, la motivation et la régulation émotionnelle : le cortex préfrontal et le noyau accumbens. Ces parties du cerveau contiennent en effet un grand nombre de récepteurs cannabinoïdes CB1R et ont d’importantes connections fonctionnelles l’une avec l’autre.
« Nos résultats viennent corroborer aujourd’hui les études cliniques et épidémiologiques ayant mis en évidence des associations entre un déséquilibre Oméga3/Oméga6 et les troubles de l’humeur, expliquent Olivier Manzoni et Sophie Layé. Pour déterminer si les déficits en Oméga 3 sont responsables de ces désordres neuropsychiatriques, des études complémentaires sont bien sûr nécessaires ».
En conclusion, les auteurs estiment que leurs résultats apportent les premiers éléments biologiques permettant d’expliquer les corrélations observées entre régimes pauvres en Oméga 3, très répandus dans le monde industrialisé, et les troubles de l’humeur comme la dépression.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Une bactérie probiotique produit un puissant antidouleur |
|
|
|
|
|
Une bactérie probiotique produit un puissant antidouleur
COMMUNIQUÉ | 06 NOV. 2017 - 12H45 | PAR INSERM (SALLE DE PRESSE)
PHYSIOPATHOLOGIE, MÉTABOLISME, NUTRITION
Le microbiote intestinal n’a pas fini de nous surprendre. Dans une nouvelle étude menée par des chercheurs de l’Inserm, de l’université et du CHU de Toulouse[1] au sein de l’Institut de Recherche en Santé Digestive (Inserm/INRA/Université Toulouse III – Paul Sabatier, ENVT), le mode d’action d’une bactérie probiotique utilisée dans le traitement symptomatique des douleurs du syndrome de l’intestin irritable est dévoilé. La bactérie produit un neurotransmetteur (le GABA) qui grâce à sa liaison avec un lipide, passe la barrière intestinale, agit sur les neurones sensitifs situés au niveau du ventre et réduit la douleur viscérale. Cette nouvelle famille de molécules associant lipoprotéine et GABA pourrait être utilisable comme médicament antidouleur. Ces travaux sont publiés dans la revue Nature Communication.
Le syndrome de l’intestin irritable est une maladie chronique caractérisée par des douleurs abdominales associées à des troubles du transit. Cette pathologie est hautement invalidante et diminue drastiquement la qualité de vie des patients. Face à ce syndrome, le patient reste démuni, car il n’existe pas de traitement vraiment efficace pour cette pathologie qui, en France, concerne 5% de la population.
La bactérie Echerichia coli Nissle 1917[2], probiotique découvert pendant la première guerre mondiale, a récemment été utilisée par voie orale comme traitement thérapeutique alternatif du syndrome de l’intestin irritable. L’approche thérapeutique par les probiotiques connaît un engouement étant donné le caractère « naturel » et l’absence supposée de toxicité de ces produits. Il n’en demeure pas moins qu’il est nécessaire de comprendre les bases moléculaires de leurs propriétés thérapeutiques. La recherche dans ce domaine veille et s’interroge sur l’origine des facteurs bactériens qui régissent ces activités probiotiques et le bien-fondé de leur utilisation.
C’est dans cette optique que les chercheurs ont développé un projet visant à caractériser l’activité probiotique de la souche E. coli Nissle 1917. Leurs travaux démontrent que cette bactérie produit du GABA (acide gamma aminobutyrique) lié à un acide aminé et à un acide gras. Ensemble, ces trois molécules forment un lipopeptide. La liaison de cet acide gras par la bactérie permet au GABA qui est le principal neurotransmetteur inhibiteur du système nerveux de pouvoir passer la barrière intestinale. Il peut ensuite se fixer sur son récepteur pour diminuer l’activation des neurones sensitifs et ainsi diminuer la douleur. Le GABA n’a en revanche pas la capacité de franchir, seul (sans son acide gras), la barrière intestinale.
Une fois le lipopeptide identifié et caractérisé, des premières expériences ont d’abord été menées sur des neurones sensitifs de souris en culture. L’exposition de ces neurones à la capsaicine (le produit actif du piment) entraîne une augmentation des flux de calcium caractéristiques de leur hypersensibilité, par rapport aux neurones contrôles. Ces changements de flux calciques ne sont pas retrouvés chez ces mêmes neurones prétraités par un ajout de lipopeptide de synthèse au milieu de culture.
Ces mêmes expériences ont ensuite été conduites sur des souris chez lesquelles des électrodes posées sur l’animal permettaient de mesurer l’intensité des contractions abdominales caractéristiques de la douleur (l’équivalent des crampes d’estomac chez l’homme). Dès lors qu’elles ingéraient le lipopeptide de synthèse, les souris hypersensibles retrouvaient des contractions abdominales équivalentes à celles des souris contrôles.
Cette étude a permis de breveter une nouvelle famille de molécules pouvant être utilisables comme médicaments antidouleur. « Ces dernières ne modifiant pas la physiologie ni la motilité intestinale, on peut également espérer qu’elles entraîneraient moins d’effets secondaires que ceux provoqués par la morphine par exemple. Ceci devra bien entendu être validé par de futurs essais thérapeutiques », déclare Nicolas Cenac.
Cette découverte démontre l’importance d’une meilleure connaissance des modes d’action des probiotiques actuellement utilisés et le potentiel thérapeutique des lipopeptides produits par le microbiote intestinal.
Ces travaux ont fait l’objet du dépôt d’une demande de brevet par Inserm transfert.
[1] Associant une équipe de physiopathologistes et une équipe de bactériologistes de l’Institut de Recherche en Santé Digestive (IRSD) de Toulouse (Inserm/INRA/Université Toulouse III – Paul Sabatier, ENVT) et des équipes de chimistes de l’institut des biomolécules Max Mousseron de Montpelier et du réseau Metatoul de Toulouse
[2] Du nom du médecin allemand Alfred Nissle qui avait isolé cette souche des selles d’un soldat de la Première Guerre mondiale, qui était le seul de son unité ne souffrant pas de dysenterie.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Du contexte au cortex : à la découverte des neurones sociaux |
|
|
|
|
|
Du contexte au cortex : à la découverte des neurones sociaux
COMMUNIQUÉ | 22 MAI 2017 - 14H20 | PAR INSERM (SALLE DE PRESSE)
NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE | TECHNOLOGIE POUR LA SANTE
L’existence de nouveaux neurones sociaux vient d’être mise en évidence par des chercheurs de l’Institut de neurosciences des systèmes (Aix-Marseille Université/Inserm), du Laboratoire de psychologie sociale et cognitive (Université Clermont Auvergne/CNRS) et de l’Institut de neurosciences de la Timone (Aix-Marseille Université/CNRS). Ces recherches menées chez le singe ont montré que lorsque l’animal est amené à réaliser une tâche, des neurones différents s’activent selon la présence ou non d’un congénère. Ces résultats, publiés dans la revue Social Cognitive and Affective Neuroscience, améliorent notre compréhension du cerveau social et permettent de mieux comprendre le phénomène de facilitation sociale1.
Un enjeu majeur des neurosciences est de comprendre le fonctionnement du cerveau dans son environnement social. La collaboration inédite d’un spécialiste de la neurophysiologie du primate avec un spécialiste de psychologie sociale expérimentale vient de révéler l’existence de deux nouvelles populations de neurones dans le cortex préfrontal : des « neurones sociaux » et des « neurones asociaux ».
La plupart des aires cérébrales sont associées à des tâches spécifiques. Certaines, connues pour être spécialisées dans le traitement de l’aspect social des informations, constituent le cerveau social. Dans le cadre de la thèse de Marie Demolliens2, Driss Boussaoud et Pascal Huguet, chercheurs CNRS, ont proposé à des singes une tâche durant laquelle ils devaient associer une image (présentée sur un écran) à l’une des quatre cibles qui leur étaient également présentées (aux quatre coins de l’écran). Cette tâche associative implique le cortex pré-frontal mais pas les aires cérébrales dites sociales. Les chercheurs ont alors enregistré de manière quotidienne l’activité électrique de neurones dans cette région cérébrale pendant que les singes réalisaient la tâche demandée en présence ou en l’absence d’un congénère.
Bien que les neurones enregistrés dans le cortex préfrontal soient avant tout impliqués dans la réalisation de la tâche visuo-motrice, l’étude a révélé que la plupart se montrent sensibles à la présence ou l’absence du congénère. Ainsi, certains neurones ne s’activent fortement sur la tâche proposée que lorsque le congénère est présent (d’où leur nom de « neurones sociaux ») alors que d’autres ne s’activent fortement qu’en l’absence du congénère (« neurones asociaux »). De manière encore plus surprenante, plus les neurones sociaux s’activent en présence du congénère, plus le singe réussit la tâche proposée. Les neurones sociaux sont donc à la base de la facilitation sociale. De même, plus les neurones asociaux s’activent en l’absence du congénère, plus le singe réussit la tâche proposée (cependant moins bien qu’en condition de présence du congénère et donc d’activation des neurones sociaux). Les chercheurs ont également montré que si les neurones sociaux s’activent en l’absence du congénère ou si les neurones asociaux s’activent en sa présence (deux cas beaucoup plus rares), la performance du singe diminue.
Ces travaux révèlent l’importance du contexte social dans le fonctionnement de l’activité neuronale et ses conséquences comportementales : pour une même tâche, le cerveau n’utilise pas nécessairement les mêmes neurones selon la présence ou non d’un congénère. Les neurones sociaux pourraient ainsi ne pas être réductibles aux régions cérébrales réputées éminemment sociales mais être distribués à l’échelle du cerveau tout entier pour permettre la réalisation de différentes tâches (qu’elles soient sociales ou non). Ce résultat permet de repenser le cerveau social ainsi que certains troubles du comportement caractéristiques de l’autisme ou de la schizophrénie.
1 La facilitation sociale est observable chez toutes les espèces vivant en groupe (espèces sociales). Elle correspond à l’amélioration de la performance pour une activité en présence d’un congénère.
2 Sous la co-direction de Driss Boussaoud et de Pascal Huguet.
DOCUMENT inserm LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 ] Précédente - Suivante |
|
|
|
|
|
|