|
|
|
|
 |
|
Les bases neurobiologiques de l’anxiété |
|
|
|
|
|
Les bases neurobiologiques de l’anxiété
19 juin 2012
CP DEVANX 19 juin 2012 (76,6 ko)
Une journée scientifique intitulée "Neurobiological basis of Anxiety disorders" réunit lundi 18 juin à Paris les scientifiques des 6 organismes partenaires de DEVANX (1), projet européen coordonné par l’Inserm, démarré en 2008. L’occasion de faire un point sur l’état des connaissances acquises sur les bases neurobiologiques de l’anxiété.
© Inserm, Emmanuel Eugène
La connaissance des circuits cérébraux et les molécules-clés impliqués dans les manifestations de l’anxiété a fait de grand progrès depuis quelques années. L’utilisation de modèles animaux a beaucoup contribué à cette compréhension. Chez la souris, il est ainsi possible d’observer les changements comportementaux qui interviennent dans les situations de conflit émotionnel, par exemple comment l’animal va choisir entre l’exploration d’un espace neuf (curiosité) et le repli sur soi (peur). L’étude de l’animal dans une situation de peur apprise a aussi été bien décrite : comment l’animal va apprendre à associer un environnement neutre avec un danger potentiel.
La sérotonine et le GABA sont les 2 principales molécules "messagères" entre les neurones ("neurotransmetteurs") qui sont impliquées dans les états anxieux. Ce sont de fait les cibles communes des médicaments « anxiolytiques ».
Mais le rôle exact de ces molécules, leurs interactions avec l’environnement sont encore à préciser. L’apport de la génétique et les nouvelles données concernant la plasticité du cerveau doivent s’intégrer à la compréhension chaque jour plus fine des mécanismes en jeu. Patricia Gaspar et Laurence Lanfumey, directrices de recherche Inserm - coordinatrices du projet DEVANX - et leurs collègues, ont cherché à aborder l’étude des bases neurobiologique de l’anxiété sous divers angles.
Les aspects pharmacologiques
Les récepteurs GABAb, présents sur les neurones, sont des cibles de nouvelles molécules dont le mode d’action est complètement différent des anxiolytiques classiques (benzodiazépines) qui, quant à eux, agissent sur les récepteurs GABAa. La connaissance de la structure et de la fonction des récepteurs GABAb, ainsi que leurs interactions avec le système sérotoninergique permet de proposer des nouvelles cibles thérapeutiques.
En particulier l’équipe de Benny Bettler, membre du consortium DEVANX localisé en Suisse, a montré que les récepteurs GABAb sont des hétérodimères (assemblage de 2 sous unités différentes de récepteurs) qui possèdent des protéines partenaires pouvant modifier leurs propriétés de couplage. Les propriétés pharmacologiques des récepteurs GABAb varient en fonction de l’organisation des protéines partenaires. D’un point de vue thérapeutique, la modulation positive de ces récepteurs représente une possible stratégie pour le développement de nouveaux anxiolytiques. John Cryan, partenaire du consortium DEVANX en Irlande, a montré que le blocage des récepteurs GABAb induit en effet la diminution d’un comportement dépressif. Dans ce cadre, l’équipe de Laurence Lanfumey à Paris a étudié le lien entre les récepteurs GABAb et le système sérotoninergique.
Sous unités du récepteur GABAB : GABAB1a, GABAB1b et GABAB2
© Gassmann et Bettler, 2012
Ces sous unités sont des récepteurs à sept domaines transmembranaires couplées aux protéines G via la sous unité GABAB2. Les sous unités GABAB1a et GABAB1b diffèrent entre elles par la présence de deux domaines terminaux (sushi-domain) sur la sous unitéGABAB1a.
Le rôle de la sérotonine
Chez les personnes souffrant de dépression, d’attaques de panique, d’anxiété, ou de phobies, un traitement permettant d’augmenter le niveau de sérotonine réduit ces pathologies.
Cependant, peu de données étaient disponibles sur la cause initiale de ce manque de sérotonine, déclencheur de ces troubles. C’est pourquoi différents modèles animaux sont nécessaires aux chercheurs pour découvrir et analyser les différentes situations d’un cerveau "pauvre" en sérotonine.
La sérotonine est impliquée dans de nombreux rôles physiologiques : rythmes veille-sommeil, impulsivité, appétit, douleur, comportement sexuel, et anxiété. Son action est médiée par près d’une quinzaine de sous-types de récepteurs différents.
Le système sérotoninergique est en fait multiple : il est présent dans le système nerveux central (dans les noyaux du raphé dans le cerveau) et périphérique (dans les cellules entérochromaffines du tube digestif).
La "spécialisation" de neurones en "neurones à sérotonine" est contrôlée par différents facteurs moléculaires, selon leur localisation, et ne se fait pas aux mêmes moments du développement.
Une des études réalisées par les spécialistes de la génétique au sein du projet DEVANX a consisté à cibler de manière conditionnelle la production de sérotonine à un temps donné, dans une localisation choisie. L’équipe de Dusan Bartsch, partenaire DEVANX localisé à Mannheim, a par exemple produit des modèles de souris génétiquement modifiées qui permettent de diminuer la sérotonine à différents temps de la vie, en créant des modèles dits inductibles (l’extinction d’un gène peut être induite par l’administration d’une drogue). L’équipe de Patricia Gaspar à Paris a caractérisé des mutations dans lesquelles seule une partie des neurones sérotoninergiques est atteinte (mutation d’un facteur de transcription pet1). Chez ces souris, l’équipe a observé que l’anxiété spontanée était diminuée, mais leur conditionnement à la peur accru. Ainsi, le défaut de sérotonine centrale pourrait contribuer à associer plus facilement une réaction de panique avec des situations neutres.
Les autres circuits en jeu : circuits de la peur
Les connexions avec des travaux sur la peur et les derniers enseignements d’un point de vue neurocomportemental permettent de croiser les approches.
Il apparaît de plus en plus que ce sont des circuits neuronaux normaux de réaction à l’environnement qui sont détournés ou amplifiés de manière pathologique dans l’anxiété. Dès lors, il est très important de comprendre et d’analyser le fonctionnement de ces circuits chez les animaux "en situation". A terme, l’objectif consiste à trouver les moyens de "déconditionner" certains circuits cérébraux anormalement ou excessivement activés.
Les nouvelles approches de la physiologie sur l’animal vigile et de pharmacogénétique ont permis des avancées dans ce domaine. Par exemple le laboratoire d’Agnés Gruart à Séville, une des équipes partenaires de DEVANX, a enregistré différents neurones des circuits hippocampiques dans des situations d’apprentissage de la peur et ont observé l’effet de la modification du message médié par le GABAb et la sérotonine. Le laboratoire de Cornelius Gross à l’EMBL de Rome, a montré que l’on pouvait utiliser des récepteurs sérotoninergiques (5-HT1A) exprimés dans différentes régions cérébrales pour abolir transitoirement l’activité des circuits neuronaux très spécifiques. Ceci lui a permis de préciser les circuits hippocampiques et amygdaliens impliqués dans le phénomène de généralisation de la peur.
La recherche dans le domaine de l’anxiété, comme dans de nombreux domaines des Neurosciences, met à profit des approches intégrées, qui nécessitent des expertises multiples. Les études moléculaires doivent à présent impérativement s’intégrer dans le contexte de l’animal entier qui exprime des comportements les plus proches possibles de situations physiologiques, tout en étant rigoureusement contrôlées sur le plan expérimental. Les outils génétiques donnent une puissance inégalée pour rechercher la fonction d’une molécule déterminée ou d’un assemblage moléculaire dans un circuit donné et dans une fenêtre temporelle précise. Ce type d’approche est appelé à se développer dans les années à venir avec des outils qui permettront d’activer ou de rendre silencieux certains circuits neuronaux sélectionnés.
La résolution, pas à pas, de ces processus élémentaires imbriqués, devrait permettre d‘expliquer les mécanismes sous-tendant l’anxiété pathologique.
Note :
(1) DEVANX : “Serotonin and GABA-B receptors in anxiety : From developmental risk factors to treatment”, projet soutenu par la Commission Européenne, démarré en 2008, dont les partenaires sont l’Inserm (coordinateur), University College Cork, Irlande, European Molecular Biology Laboratory, Italie/Allemagne, Central Institute of Mental Health, Mannheim, Allemagne, Universitaet Basel, Suisse, Universidad Pablo de Olavide, Espagne
En savoir plus
DEVANX http://devanx.vitamib.com/
"Serotonin and GABA-B receptors in anxiety: From developmental risk factors to treatment"
Projet soutenu par la Commission Européenne, démarré en 2008 (FP7), dont les partenaires sont :
Inserm (coordinateur), France : http://www.inserm.fr/
University College Cork, Irlande : http://www.ucc.ie/en/
European Molecular Biology Laboratory, Italie/Allemagne : http://www.embl.org/
Central Institute of Mental Health, Mannheim, Allemagne : http://www.zi-mannheim.de/
Universitäet Basel, Suisse : http://www.unibas.ch/
Universidad Pablo de Olavide, Espagne : http://www.upo.es/portal/impe/web/portada
Bibliographie
Berger SM , Weber T, Perreau-Lenz S, Kutscherjawy S, Vogt MA, Maser-Gluth C, Lanfumey L, Gass P, Spanagel R, Bartsch DA (2012)
Functional Tph2 C1473G polymorphism causes an anxiety phenotype via compensatory, developmental changes in the serotonergic system
Neuropsychopharmacology 2012 Apr 11. [Epub ahead of print]
Gassmann M, Bettler B.
Regulation of neuronal GABA(B) receptor functions by subunit composition.
Nat Rev Neurosci. 2012 May 18;13(6):380-94
Markou A, Cryan JF.
Stress, anxiety and depression: toward new treatment strategies.
Neuropharmacology. 2012 Jan;62(1):1-2.
Narboux-Nême N, Sagné C, Diaz S, Martin C, Angenard G, Hamon M, Martres MP, Giros B, Lanfumey L, Gaspar P, Mongeau R (2011)
Severe serotonin depletion, growth and behavioral abnormalities in conditional vesicular monoamine transporter 2 knockout mouse
Neuropsychopharmacology 36:2538-2550.
Contacts chercheurs
Patricia Gaspar
Unité Inserm 839 institut du fer à Moulin
Tél. : 01 45 87 61 11
Laurence Lanfumey-Mongrédien
UMR Inserm 894 Site Pitié Salpêtrière
Tél. : 01 40 77 97 07
Contact presse
Séverine Ciancia
Service de presse de l’Inserm
Tél. : 01 44 23 60 86
DOCUMENT inserm.fr LIEN |
|
|
|
|
 |
|
MITOSE ... |
|
|
|
|
|
Déchiffrer le code de l’ubiquitine au cours de la mitose
L’ubiquitine est une petite protéine qui peut être attachée à des protéines cibles afin de réguler leur devenir comme par exemple lors de la mitose qui permet la création de deux cellules filles identiques à partir d’une cellule mère. De nombreuses combinaisons de molécules d’ubiquitine sont possibles et définissent le « code de l’ubiquitine ». L’équipe d’Izabela Sumara au sein de l’institut de génétique et de biologie moléculaire et cellulaire a identifié un mécanisme permettant de déchiffrer ce code dans les cellules humaines au cours de la mitose. Ces travaux sont publiés dans la revue Developmental Cell.
'Au cours de la mitose, les chromosomes, qui contiennent l’information génétique, sont tout d’abord copiés puis partagés de manière égale dans les deux cellules filles. Une mauvaise régulation de ce processus peut contribuer au développement de cancers. L’un des mécanismes importants contrôlant la progression mitotique est l’attachement de la petite protéine ubiquitine à des protéines cibles. L’addition d’ubiquitine (ubiquitination) est une modification transitoire qui peut conduire soit à la dégradation de la protéine cible soit à la régulation de sa fonction. De nombreux arrangements et combinaisons de molécules d’ubiquitine isolées ou sous forme de chaines connectées sont possibles et définissent le « code de l’ubiquitine ». Cependant, les mécanismes cellulaires permettant son décodage dans les cellules humaines au cours de la mitose restent largement inexplorés.
L’équipe d’Izabela Sumara avait identifié au cours d’une étude précédente des évènements d’ubiquitination contrôlant des protéines kinases essentielles pour la progression mitotique. Les chercheurs avaient démontré que l’addition d’une molécule d’ubiquitine régule la fonction de ces enzymes cruciales et les relocalise dans des structures subcellulaires spécifiques. Toutefois, la manière exacte dont l’ajout d’ubiquitine régule la mitose ainsi que les mécanismes par lesquels ces signaux peuvent être décodés, demeurait inconnue.
En collaboration avec la plateforme de criblage haut-débit de l’institut de Génétique et de Biologie Moléculaire et Cellulaire, les chercheurs ont réalisé un criblage non biaisé, par ARN interférents, de tous les récepteurs protéiques connus et prédits de l’ubiquitine. Il existe environ 200 récepteurs de l’ubiquitine dans les cellules humaines qui peuvent spécifiquement reconnaitre des substrats ubiquitinés et moduler leur fonction. Cette analyse a permis l’identification de la protéine de liaison à l’ubiquitine appelée UBASH3B.
UBASH3B avait été précédemment montrée comme dérégulée dans des cancers humains mais n’avait jamais été reliée à la progression mitotique. Les chercheurs ont pu déterminer qu’UBASH3B est essentielle pour la ségrégation correcte des chromosomes pendant la mitose. De plus, UBASH3B interagit directement avec la forme ubiquitinée d’AURORA B, une des kinases les plus importantes régulant la ségrégation chromosomique lors de la mitose. Par cette interaction, UBASH3B contrôle la localisation subcellulaire d’AURORA B, sans modifier son niveau d’expression. UBASH3B est un facteur essentiel, à la fois requis mais également suffisant, pour induire le recrutement d’AURORA B sur les microtubules des fuseaux mitotiques qui régule la vitesse et la précision de la ségrégation chromosomique.
Cette étude identifie la première protéine réceptrice de l’ubiquitine mitotique dans les cellules humaines et montre de quelle manière le « code de l’ubiquitine » peut être déchiffré au cours de la division mitotique. Ces résultats peuvent aussi expliquer comment la dérégulation d’UBASH3B contribue au développement de nombreux cancers.
En savoir plus
▪ Ubiquitin Receptor Protein UBASH3B Drives Aurora B Recruitment to Mitotic Microtubules.
Krupina K, Kleiss C, Metzger T, Fournane S, Schmucker S, Hofmann K, Fischer B, Paul N, Porter IM, Raffelsberger W, Poch O, Swedlow JR, Brino L, Sumara I.
Dev Cell. 2016 Jan 11;36(1):63-78. doi: 10.1016/j.devcel.2015.12.017.
Contact chercheur
▪ Izabela Sumara
Institut de Génétique et de Biologie Moléculaire et Cellulaire
CNRS UMR 7104, Inserm U 964, Université de Strasbourg
1 Rue Laurent Fries
BP 10142
67404 ILLKIRCH CEDEX
Tel: 03 88 65 35 21
DOCUMENT cnrs LIEN |
|
|
|
|
 |
|
PARIS, 10 avril 2014 L'origine neurobiologique du trouble du déficit de l'attention confirmée |
|
|
|
|
|
L'ORIGINE NEUROBIOLOGIQUE DU TROUBLE DU DÉFICIT DE L'ATTENTION
PARIS, 10 avril 2014
L'origine neurobiologique du trouble du déficit de l'attention confirmée
Une étude vient de confirmer, chez la souris, l'origine neurobiologique du trouble du déficit de l'attention (TDA), un syndrome dont les causes restent mal connues. Des chercheurs du CNRS, de l'université de Strasbourg et de l'Inserm1 ont identifié une structure cérébrale, le colliculus supérieur, dont l'hyperstimulation entraine des modifications de comportement similaires à celles de certains patients souffrant de TDA. Leurs travaux montrent aussi une accumulation de noradrénaline dans la zone concernée, mettant en lumière un rôle de ce médiateur chimique dans les troubles de l'attention. Ces résultats sont publiés dans la revue Brain Structure and Function.
Le trouble du déficit de l'attention touche entre 4 et 8% des enfants. Il se manifeste principalement par une perturbation de l'attention, une impulsivité verbale et motrice, parfois accompagnés d'hyperactivité. Environ 60% de ces enfants présenteront encore des symptômes à l'âge adulte. Il n'existe à ce jour aucun traitement curatif. Seule l'administration de psychostimulants améliore l'état des patients, avec cependant des effets secondaires importants, comme la prédisposition à des dépendances à l'âge adulte. Une controverse persistante autour de l'origine neurobiologique de ce trouble a freiné le développement de nouveaux traitements.
L'étude strasbourgeoise s'intéresse au comportement de souris transgéniques présentant un défaut développemental au niveau du colliculus supérieur. Cette structure, située dans le cerveau moyen, est une plaque tournante sensorielle impliquée dans le contrôle de l'attention et de l'orientation visuelle et spatiale. Les souris étudiées sont caractérisées par une duplication des projections neuronales entre le colliculus supérieur et la rétine. Cette anomalie provoque une hyperstimulation visuelle du colliculus supérieur, dans lequel on trouve également un excès de noradrénaline. Les effets de ce neurotransmetteur, qui varient chez différentes espèces, sont encore mal connus. Cependant, ce déséquilibre en noradrénaline est associé à des changements comportementaux significatifs chez les souris porteuses de la mutation génétique. En les étudiant, les chercheurs ont observé une perte de l'inhibition : les souris hésitent par exemple moins à pénétrer dans un environnement hostile. Elles ont en fait des difficultés à prendre en compte les informations pertinentes et font preuve d'une forme d'impulsivité. Ces symptômes rappellent ceux des patients adultes souffrant d'une des formes du TDA.
Actuellement, les travaux fondamentaux sur le TDA utilisent surtout des modèles animaux obtenus par des mutations perturbant les voies de production et de transmission de la dopamine. Chez les souris au colliculus supérieur malformé, ces voies sont intactes. Les modifications interviennent ailleurs, au niveau des réseaux de neurones du cerveau moyen. Utiliser ces nouveaux modèles permettrait de développer une approche plus globale du TDA, en élargissant le périmètre classique des recherches sur ses causes. Caractériser plus précisément les effets de la noradrénaline sur le colliculus supérieur pourrait donc ouvrir la voie à des stratégies thérapeutiques innovantes.
DOCUMENT cnrs LIEN |
|
|
|
|
 |
|
Neuro-modelage des souvenirs |
|
|
|
|
|
Neuro-modelage des souvenirs
Serge Laroche dans mensuel 344
daté juillet-août 2001 - Réservé aux abonnés du site
Comment les neurones parviennent-ils à enregistrer nos souvenirs de façon durable ? Les controverses sont vives. Néanmoins, le puzzle se constitue peu à peu autour d'une pièce centrale : la plasticité du cerveau. Variation de l'activité de certaines synapses, croissance de nouvelles d'entre elles, et peut-être même formation de nouveaux neurones semblent impliquées dans la formation de traces mnésiques au niveau cellulaire.
Plusieurs centaines de milliards de neurones, chacun relié directement à dix ou vingt mille autres neurones par des connexions appelées synapses : voilà la formidable machine de plus d'un million de milliards de connexions qui nous permet de percevoir, de construire nos souvenirs, mais aussi de savoir, de croire, de décider et d'agir.
La clé de ses capacités réside en une propriété étonnante : celle de pouvoir remodeler, reconfigurer ses propres circuits. A cette aune, qu'est-ce que la mémoire ? Le modèle général considère qu'à chaque souvenir correspondrait une configuration unique d'activité dans de vastes réseaux neuronaux. Or, on sait depuis longtemps que cette activité est, par nature, évanescente. Elle ne peut donc constituer une trace stable à long terme, compatible avec la quasi-permanence des souvenirs. Alors, comment ceux-ci s'inscrivent-ils ? Quelle est leur trace matérielle ?
L'idée d'une reconfiguration des circuits neuronaux naît en 1894, lorsque le neuroanatomiste Santiago Ramón y Cajal propose, au cours d'une conférence à la Royal Society de Londres, une hypothèse révolutionnaire : l'apprentissage faciliterait l'expansion et la croissance de protubérances - elles allaient bientôt s'appeler les synapses - qui connectent les neurones entre eux. Cette première formulation du concept de plasticité neuronale est, à l'époque, d'autant plus frappante que les études anatomiques du cerveau et de son développement révèlent la précision et la stabilité des assemblages neuronaux. Sans arguments expérimentaux directs, les positions théoriques s'affrontent entre les tenants de l'hypothèse de la plasticité et ceux qui, comme Lorente de Nó, un élève de Cajal, et Deslisle Burns, prônent une conception plus dynamique impliquant la circulation en boucle de l'activité neuronale dans des chaînes de neurones. En 1949, le psychologue canadien Donald Hebb énonce une hypothèse forte, qui permet de concilier les deux points de vue. Hebb propose que l'activité électrique que l'on observe dans des assemblées de neurones lors d'un apprentissage persiste pendant un certain temps, comme pour frayer un chemin, et que cela entraîne des modifications cellulaires ou biochimiques des neurones activés, de sorte que la force synaptique entre eux augmente. Un demi-siècle après la publication de l'ouvrage de Hebb, le postulat selon lequel l'activité simultanée de neurones connectés modifie les connexions synaptiques entre ces neurones est devenu la pierre angulaire de notre compréhension des bases cellulaires de la mémoire.
Mais un postulat n'a pas force de théorème. Comment prouver la réalité de cette plasticité ? Un premier argument en sa faveur est venu de l'étude de formes simples d'apprentissage en l'occurrence, du conditionnement chez un mollusque marin, l'aplysie. En 1970, Eric Kandel et ses collaborateurs mettent en évidence des changements fonctionnels des synapses de l'aplysie, corrélativement à cet apprentissage1. Ces résultats ne devaient trouver leur pendant chez les mammifères qu'en 1973. Timothy Bliss et Terje Lømo démontrent alors, en travaillant sur des lapins, l'extraordinaire capacité de plasticité des synapses de l'hippocampe - structure qui joue un rôle fondamental dans de nombreux types de mémoire voir l'article de Bruno Poucet dans ce numéro. Cette plasticité est désormais connue sous le nom de potentialisation à long terme, ou LTP2. Dans leur découverte initiale, les auteurs montrent qu'une brève stimulation à haute fréquence d'une voie neuronale envoyant des informations sensorielles du cortex à l'hippocampe, induit une augmentation importante et durable de l'efficacité de la transmission synaptique : les neurones cibles de l'hippocampe acquièrent une plus grande sensibilité à toute stimulation ultérieure. Le plus remarquable dans cette forme de plasticité, induite en quelques dizaines de millisecondes, est sa persistance : les synapses restent modifiées pour des semaines, voire des mois. Cette découverte suscita un enthousiasme considérable dans la communauté scientifique. Avait-on là le mécanisme du stockage de l'information dans le cerveau, que l'on cherchait depuis l'énoncé de la théorie de Hebb ? En étudiant les mécanismes de la LTP au niveau cellulaire, allait-on découvrir les mécanismes de la mémoire ? Cela semblait plausible à de nombreux chercheurs. Dès lors, un très grand nombre d'équipes ont orienté leurs travaux vers l'étude de ce modèle de plasticité.
Mécanismes de plasticité. Un premier courant, de loin le plus important en efforts de recherche, se penchait sur les mécanismes de la LTP au niveau cellulaire et moléculaire3. Les synapses concernées par le phénomène de plasticité utilisent le glutamate comme neuromédiateur. On en trouve dans l'hippocampe, bien sûr, mais aussi dans la plupart des structures corticales et sous-corticales du cerveau. Pour que ces synapses puissent être modifiées, il est impératif qu'elles soient d'abord activées, soit, en d'autres termes, que l'influx nerveux qui arrive au niveau du neurone présynaptique se propage au neurone post-synaptique. C'est le récepteur AMPA du glutamate qui permet la propagation de cet influx nerveux fig. 1. Si le neurone post-synaptique est suffisamment activé, un second récepteur jusqu'alors inactif, le récepteur NMDA, subit une modification qui fait que sa stimulation par le glutamate entraîne l'entrée de calcium dans la cellule. En découle l'activation de nombreuses protéines, en particulier des kinases* dont la calmoduline-kinase II CaMK II et les MAP kinases. Au moins deux types de mécanismes sont alors déclenchés : la phosphorylation* des récepteurs du glutamate tant NMDA que AMPA, et l'activation de la machinerie génique. Ainsi qu'on peut le voir en microscopie électronique, ces modifications aboutissent à un profond remodelage des circuits neuronaux : changement de la forme et de la taille des synapses, insertion de récepteurs du glutamate et transformation de synapses silencieuses en synapses actives, et croissance de nouvelles synapses.
Comment mettre à jour l'hypothétique lien entre plasticité synaptique et processus d'apprentissage et de mémorisation ? Le chemin était difficile, et l'histoire, encore jeune, de ces recherches est jalonnée de constantes fluctuations entre le rejet et l'acceptation de l'hypothèse. Toutefois, les connaissances sur les mécanismes moléculaires de la mémoire ont progressé ces dix dernières années à un rythme étonnant, et de plus en plus de résultats montrent que ces mécanismes de plasticité sont un élément déterminant du stockage des souvenirs.
Dans les années 1980, plusieurs laboratoires ont étudié des formes simples d'apprentissage associatif chez le rat, comme l'association d'un son avec un léger choc électrique. Après une certaine période de conditionnement, l'animal réagit au son seul comme il réagissait au choc électrique. Parallèlement, les neurones de nombreuses structures, y compris l'hippocampe, présentent une augmentation importante et sélective de leur fréquence de décharge. De plus, l'efficacité de la transmission synaptique dans les circuits de l'hippocampe augmente parallèlement aux progrès de l'apprentissage. Mais ces données n'ont qu'une valeur de corrélation, et ne sont pas la preuve d'une relation de cause à effet. Sans compter que les variations d'efficacité synaptique pen-dant l'apprentissage sont techniquement difficiles à mettre en évidence, car la transmission synaptique moyenne sur une large population de neurones reste relativement constante. De fait, des données suggèrent que le renforcement de certaines populations de synapses s'accompagne de l'affaiblissement d'autres. Ceci n'est pas si surprenant : comment concevoir que l'efficacité de très nombreuses synapses augmente chaque fois que l'on apprend ? Un tel système serait probablement très vite saturé. La dépression à long terme LTD, un mécanisme de plasticité inverse de la LTP que l'on peut observer dans certaines conditions d'activation synaptique, interviendrait-elle à ce niveau en évitant la saturation du système d'encodage et en augmentant le contraste entre synapses potentialisées et déprimées ? Ou jouerait-elle un rôle dans l'oubli comme le prédisent certains modèles théoriques ? Si des modifications synaptiques de type LTP ou LTD ont pu être observées dans différentes structures du cerveau en fonction de l'information à mémoriser, une analyse précise nécessitera le développement de nouvelles méthodes électro-physiologiques permettant d'isoler de petites populations de synapses.
La pharmacologie et la génétique ont apporté des réponses là où l'électrophysiologie se heurtait à ses limites. Le blocage de la LTP, obtenu en faisant appel à des techniques relevant de l'un ou l'autre de ces deux domaines, modifie-t-il les capacités d'apprentissage d'un animal ? A la fin des années 1980, le groupe de Richard Morris à Edimbourg montre que l'administration à des rats d'un antagoniste* des récepteurs NMDA, qui bloque la plasticité des synapses sans perturber la transmission des messages neuronaux assurée par le récepteur AMPA, rend ces animaux incapables d'apprendre une tâche de navigation spatiale. A mesure que les doses d'antagoniste augmentent, la plasticité synaptique diminue, et les déficits mnésiques se renforcent4. De notre côté, nous constations qu'en présence d'un antagoniste des récepteurs NMDA les neurones de l'hippocampe ne modifient plus leur activité pendant un apprentissage associatif, suggérant que ces mécanismes de plasticité sont nécessaires à la construction d'une représentation neuronale de l'information à mémoriser. Et, alors que l'équipe de Bruce McNaughton à Tucson montrait que la saturation de la LTP dans l'hippocampe par de multiples stimulations électriques perturbait l'apprentissage spatial, l'enthousiasme pour considérer que la LTP représentait un modèle des mécanismes de l'apprentissage grandissait. Mais le scepticisme quant au rôle de la LTP dans la mémoire s'installa de nouveau lorsque plusieurs équipes ne purent reproduire ce résultat. Il a fallu plusieurs années pour inverser la tendance et montrer que l'on observe un réel déficit mnésique pour peu que l'on s'approche autant que possible de la saturation maximale de la LTP, saturation qui empêche les synapses d'être modifiées pendant l'apprentissage.
Une autre approche déterminante a consisté à d'abord rechercher les mécanismes biochimiques et moléculaires de la mémoire, puis à voir s'ils étaient similaires à ceux de la plasticité. Les premières études que nous avons réalisées avec Tim Bliss au milieu des années 1980 ont ainsi mis en évidence une augmentation de la capacité de libération synaptique du glutamate dans différentes régions de l'hippocampe après un apprentissage associatif, par des mécanismes neurochimiques identiques à ceux de la LTP. Ces résultats ont été confirmés lors de la réalisation d'autres tâches d'apprentissage, comme l'apprentissage spatial. Nombre d'autres études ont montré que la phosphorylation de différentes kinases ou l'augmentation de la sensibilité des récepteurs du glutamate - ainsi que d'autres mécanismes cellulaires impliqués dans la LTP - sont activées lorsqu'un animal apprend5. Et inversement le blocage de ces événements biochimiques perturbe invariablement l'apprentissage.
Apports très récents. Plus récemment, les techniques de modification génique chez la souris ont permis d'apporter des réponses encore plus démonstratives. D'un grand nombre d'études il ressort que l'inactivation génétique de molécules importantes pour la plasticité perturbe corrélativement l'apprentissage. Des souris chez lesquelles les neurones de certaines zones de l'hippocampe n'expriment pas le récepteur NMDA se sont révélées particulièrement riches en enseignements. Chez ces souris, la LTP est abolie dans la région hippocampique concernée, la stabilité des cellules de lieu est altérée voir l'article de Bruno Poucet dans ce numéro et les animaux présentent corrélativement des déficits importants de mémoire spatiale6. Inversement, en augmentant, chez d'autres souris, l'expression d'un gène qui code une protéine du récepteur NMDA, l'équipe de Joe Tsien à Princeton a observé de nettes améliorations des performances mnésiques dans de nombreuses tâches d'apprentissage7. Au vu de ces résultats, il semble indéniable que le récepteur NMDA est un acteur clé de la mémoire. Mais, de façon surprenante, les déficits mnésiques observés chez les souris dépourvues de récepteur NMDA peuvent être compensés par une période d'élevage dans un environnement riche en stimulations sensorielles8 voir l'article de Claire Rampon. S'agit-il de la compensation de mécanismes moléculaires défectueux par d'autres ? La fonction déficiente est-elle prise en charge par d'autres circuits ? Il est encore trop tôt pour le dire, mais ce type de données montre qu'on ne saurait restreindre les capacités mnésiques d'un animal à la présence du récepteur NMDA dans telle zone du cerveau.
L'idée que la mémorisation repose sur des modifications synaptiques implique que ces modifications soient stabilisées et consolidées. Comment peuvent-elles perdurer en résistant au renouvellement des molécules de la cellule ? On a constaté que l'administration d'inhibiteurs de la synthèse protéique pendant l'apprentissage perturbe la mémoire à long terme sans altérer la mémoire à court terme. Il semble donc que ces deux types de mémoires reposent sur des mécanismes biologiques distincts - la mémoire à long terme requérant la synthèse de protéines. On observe du reste une dichotomie analogue dans la plasticité synaptique, dont seule la phase durable nécessite l'apport de nouvelles protéines. Déduction logique : les mécanismes de plasticité neuronale et de consolidation mnésique impliquent très probablement des régulations de gènes. C'est au début des années 1990 que les premières évidences en la matière ont été mises à jour : l'induction de la LTP dans l'hippocampe conduit à l'activation de gènes dans le noyau des neurones activés. Ces régulations transcriptionnelles commencent par l'activation rapide en quelques dizaines de minutes et transitoire jusqu'à quelques heures d'une classe de gènes appelés « gènes précoces ». Certains d'entre eux codent des protéines qui agissent directement au niveau de la synapse. Mais une fraction importante, dont fait partie le gène zif268 , code des facteurs de transcription nucléaires modifiant l'expression d'autres gènes appelés, eux, effecteurs tardifs5,9. La réponse transcriptionnelle globale se traduit, sur plusieurs jours, par des vagues successives d'expression de différents gènes. Par exemple, l'expression des kinases est augmentée dans une fenêtre temporelle de quelques heures à un jour, alors que les récepteurs du glutamate sont, quant à eux, surexprimés entre 2 et 4 jours après l'induction de la LTP.
Commutateur moléculaire. Ce sont les kinases activées par l'entrée de calcium induite par la stimulation du récepteur NMDA, et en particulier les MAP kinases, qui sont à l'origine de l'expression des gènes précoces. Une fois phosphorylées, ces kinases activent des facteurs de transcription tels que CREB, qui se fixent sur des sites spécifiques de promoteurs de gènes dans le noyau et modifient leur expression10. Plusieurs études montrent que ces mécanismes jouent un rôle important dans la mémoire : les MAP kinases sont rapidement phosphorylées lors de l'apprentissage et le blocage de leur phosphorylation pendant l'acquisition perturbe l'apprentissage. L'activation des gènes précoces serait, quant à elle, l'étape cruciale permettant le déroulement complet du programme cellulaire de transcription génique qui entraîne une modification durable de la connectivité neuronale. Les groupes d'Alcino Silva et d'Eric Kandel ont, par exemple, montré que l'inactivation génétique de CREB chez des souris mutantes conduit à un déclin rapide de la LTP hippocampique et à des déficits de mémoire dans de nombreuses tâches11,12. En collaboration avec Tim Bliss, nous avons montré que, chez des souris mutantes chez lesquelles le gène zif268 est invalidé, les neurones de l'hippocampe conservent leurs propriétés de plasticité, mais à court terme seulement. Corrélativement, seule la mémoire à court terme des souris mutantes est intacte : elles sont incapables de retenir une information au-delà de quelques heures dans des tâches de mémorisation de l'espace, de reconnaissance d'objets familiers ou des tests de mémoire olfactive ou gustative. Ainsi, les gènes précoces tels que zif268 joueraient-ils le rôle de commutateurs moléculaires permettant d'enclencher les changements synaptiques durables nécessaires à la formation de souvenirs à long terme13.
Nouveaux neurones. Le fait que les activations de gènes, et donc la synthèse de protéines, soient d'une telle importance lors de la LTP et de l'apprentissage a soulevé un autre problème : comment les nouvelles protéines synthétisées pouvaient-elles être dirigées vers les synapses activées, et seulement elles, sans être distribuées à toutes les synapses d'un neurone ? La question paraissait si difficile qu'on était amené à penser que la plasticité ne serait peut-être qu'un mécanisme non spécifique de facilitation globale de circuits. Mais, en 1997, Uwe Frey et Richard Morris démontrent par élimination de différentes hypothèses que le seul mécanisme possible est le marquage des synapses activées, marquage qui différencierait ces synapses des synapses non activées, et leur permettrait de « capter » les protéines nouvellement synthétisées14. La nature de ce marqueur est, pour l'heure, inconnue. La découverte d'ARN messagers et de ribosomes dans les dendrites, alors qu'on les pensait cantonnés au corps cellulaire du neurone, a, elle aussi, révolutionné l'approche du mécanisme de modification des synapses. Certains ARN messagers, comme celui qui code la kinase CaMKII, ont une expression dendritique qui augmente fortement dans la demi-heure qui suit l'induction de la plasticité et l'apprentissage. Il semble que ces ARNm migrent le long des dendrites, et soient capturés par les ribosomes qui se trouvent à proximité immédiate des synapses activées - mais pas par ceux qui se trouvent à proximité des synapses inactives fig. 2. Il n'est donc pas impossible que la synthèse locale de protéines soit un mécanisme important assurant la spécificité de la plasticité synaptique et du frayage neuronal.
Qui dit souvenirs à long terme, dit stabilisation de tout un relais synaptique. La plasticité se propage-t-elle dans des réseaux de neurones interconnectés ? On relève, là encore, l'importance des régulations de gènes. Prenons l'exemple du gène de la syntaxine, une protéine qui intervient dans la libération du neuromédiateur. Nous savions déjà que, après l'induction de la LTP, son expression augmente pendant plusieurs heures dans les neurones postsynaptiques d'une zone de l'hippocampe appelée gyrus denté. Une fois synthétisée, la protéine migre vers l'extrémité axonale de ces neurones, extrémité qui se trouve dans une autre zone de l'hippocampe, la zone CA3. Là, elle favorise la libération synaptique de glutamate, donc l'activation d'autres neurones, et l'induction d'une LTP à leur niveau. Il apparaît que la régulation de l'expression de la syntaxine intervient également lors d'un apprentissage. Lors d'une tâche de mémoire spatiale, son expression augmente non seulement dans les neurones de l'hippocampe, mais aussi dans des régions du cortex préfrontal15, ce qui suggère le frayage de réseaux neuronaux, en partie par son intermédiaire, lors de la mémorisation.
Comme on l'a vu, les recherches actuelles montrent que les expériences sensorielles laissent des traces dans le cerveau en modifiant l'efficacité des synapses entre neurones et en créant de nouvelles synapses. Et si de nouveaux neurones se créaient aussi ? Impossible, aurait-on dit, il y a encore peu de temps. Nous perdons des neurones en permanence parce que les neurones qui meurent continuellement dans le cerveau adulte ne sont pas remplacés, ce qui est probablement l'une des causes majeures de nombreux désordres neurologiques. Pourtant, des travaux de Joseph Altman à la fin des années 1960 suggéraient que de nouveaux neurones étaient générés dans le gyrus denté de l'hippocampe pendant la vie postnatale et chez le jeune adulte. D'autres travaux montraient aussi une neurogenèse dans certaines régions cérébrales impliquées dans la mémoire des chants chez les canaris. Ces recherches sont longtemps restées dans l'ombre car elles semblaient n'être que des exceptions face au dogme prévalent. Mais, en 1998, Elizabeth Gould et son équipe démontrent qu'une neurogenèse se produit dans le gyrus denté chez le singe adulte et, la même année, Freg Gage au Salk Institute en Californie et ses collègues suédois de l'université de Göteborg observent le même phénomène chez l'homme en étudiant les cerveaux de patients âgés de 57 à 72 ans16I. Ces nouveaux neurones sont produits à partir d'une population de cellules progénitrices qui migrent dans le gyrus denté et se différencient en neurones. D'autres études ont montré que cette neurogenèse chez l'adulte se produit aussi dans des régions corticales. Quel pourrait être le rôle fonctionnel de ce nouveau type de plasticité ? S'agit-il d'un mécanisme de remplacement compensant partiellement les pertes neuronales ou a-t-il un rôle spécifique dans certaines fonctions cognitives ? En ce qui concerne l'apprentissage, deux études viennent de montrer, d'une part, qu'il augmente la survie des nouveaux neurones formés dans le gyrus denté17 et, d'autre part, qu'il est perturbé lorsque l'on empêche la neurogenèse chez le rat adulte18 fig. 3. Peut-on en conclure qu'apprendre, c'est aussi former de nouveaux neurones et que ces nouveaux neurones sont impliqués dans le codage de l'information qui vient d'être apprise ? Peut-on imaginer faciliter ces mécanismes de neurogenèse pour tenter de compenser les déficits mnésiques associés à certaines maladies neurodégénératives ? Il est encore beaucoup trop tôt pour le dire.
Ouverture. De tous ces résultats fondamentaux, commencent à émerger, çà et là, des embryons d'explications quant aux mécanismes cellulaires de certaines pathologies de la mémoire, comme le syndrome de l'X fragile la plus commune des formes héréditaires de retard mental ou la maladie d'Alzheimer. Par exemple, chez des souris qui surexpriment la protéine APP* et présentent des signes neuropathologiques de la maladie d'Alzheimer, on observe, associée aux déficits mnésiques, une altération de la plasticité synaptique dans l'hippocampe19. Si les connaissances qui s'accumulent sur la plasticité synaptique constituent l'une des pierres de ce qui sera, un jour, une réelle théorie de la mémoire, elles pourraient donc aussi, à échéance peut-être plus courte, favoriser l'émergence de nouvelles pistes thérapeutiques pour compenser certains dysfonctionnements de la mémoire.
1 V. Castellucci et al., Science, 167 , 1745, 1970.
2 T.V.P. Bliss et T. Lømo, J. Physiol. Lond., 232 , 331, 1973.
3 T.V.P. Bliss et G.L. Collingridge, Nature, 361 , 31, 1993.
4 S. Davis et al., J. Neurosci., 12 , 21, 1992.
5 S. Davis et S. Laroche, C.R. Acad. Sci. Paris, 321 , 97, 1998.
6 T.J. McHugh et al ., Cell, 87 , 1339, 1996.
7 Y.P. Tang et al., Nature, 401 , 63, 1999.
8 C. Rampon et al., Nature Neurosci., 3 , 238, 2000.
9 K.L. Thomas et al., Neuron., 13 , 737, 1994.
10 S. Davis et al., J. Neurosci., 20 , 4563, 2000.
11 R. Bourtchuladze et al., Cell, 79 , 59, 1994.
12 M. Mayford et E.R. Kandel, Trends in Genetics, 15 , 463, 1999.
13 M.W. Jones et al., Nature Neurosci., 4 , 289, 2001.
14 U. Frey et R.G.M. Morris, Nature, 385 , 533, 1997.
15 S. Davis et al., Learning & Memory, 5 , 375, 1998.
16 P.S. Eriksson et al ., Nature Med., 11 , 1313, 1998.
17 E. Gould et al ., Nature Neurosci., 2 , 260, 1999.
18 T.J. Shors et al ., Nature, 410 , 372, 2001.
19 P.F. Chapman et al ., Nature Neurosci., 2 , 271, 1999.
NOTES
*Protéines-kinases
Enzymes qui catalysent une réaction de phosphorylation durant laquelle un groupement phosphate est fixé sur une protéine donnée.
*Antagoniste
Molécule capable de se lier spécifiquement à un récepteur donné sans produire d'effet physiologique.
*APP Protéine précurseur du peptide amyloïde qui est anormalement secrété dans la maladie d'Alzheimer et forme après agrégation la composante principale des plaques séniles observées chez les patients atteints de cette maladie.
DOCUMENT la recherche.fr LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante |
|
|
|
|
|
|